Gurotec

The specialist for fastening technologie

FASTENING FOR THE ■ CONSTRUCTION WITH CLT

WOOD CONNECTORS
SCREWS

BIM-PORTAL

SPECIAL COMPONENIS

f © 》 温 in

Solid timber construction

Product finder	$4-5$
Company portrait	$6-9$
Eurotec Coach	10
Eurotec BIM online portal	11
CLT Basics	$12-15$
Wood connectors	$16-73$
Screws	$74-133$
Further products	$134-175$
Special components	$176-178$

Gurotec

PRODUCT FINDER

	Sill plate	Wall-Concrete	Wall-Wall	Beam	Wall-Ceiling
WOOD CONNECTORS					
CLT system inside corner	x	x	\checkmark	x	\checkmark
CLT system angle	x	x	\checkmark	x	\checkmark
Shearing angle	x	\checkmark	\checkmark	x	\checkmark
HB flat shearing angle	x	\checkmark	x	x	x
HH flat shearing angle	x	x	x	x	x
Shearing plate	x	\checkmark	\checkmark	x	x
Tension strap HB60/70	\checkmark	\checkmark	x	x	x
Tension strap HH60/70	x	x	\checkmark	x	\checkmark
Shear wall connector	x	x	\checkmark	x	x
Assembly connector	x	x	\checkmark	x	x
Magnus hook connector	x	x	x	\checkmark	x
T-profile	x	x	x	\checkmark	x
Hidden ground anchor	x	x	x	x	\checkmark

SCREWS

Rock concrete screw	\checkmark	\checkmark	x	x	x
Konstrux fully treaded screw	x	x	\checkmark	\checkmark	\checkmark
Angle-bracket screw	x	\checkmark	\checkmark	x	\checkmark
Panelwwistec	x	x	\checkmark	\checkmark	r
SawTec	x	x	\checkmark	\checkmark	\checkmark
Topdvo rooting screw	x	x	x	x	x

FURTHER PRODUCTS

Lifting anchor, ball supporting bolt	x	x	x	x	x
IdeeFix	x	\checkmark	x	\checkmark	\checkmark
SonoTec sound insulation cork	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bolt anchor	\checkmark	x	x	x	x
Silent EPDM decoupling profile	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ecktec	x	x	x	x	x

\checkmark USABLE XNOT USABLE $\quad-$ RREEEVANT

Ceiling-Ceiling	Wall-Floor	Roof	Stairs	Insulation	Handling	Page
x	\checkmark	-	-	-	-	18-23
x	\checkmark	-	-	-	-	24-27
x	\checkmark	-	-	-	-	28-31
x	x	-	-	-	-	32-33
x	\checkmark	-	-	-	-	34-35
x	x	-	-	-	-	36-39
x	x	-	-	-	-	40-41
x	\checkmark	-	-	-	-	42-43
x	x	-	-	-	-	44-45
x	x	-	-	-	\checkmark	46-47
x	x	-	-	-	-	48-67
x	\times	-	-	-	-	68-71
x	\checkmark		-		-	72-73

x	x	x	x	x	-	76-79
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	80-107
\checkmark	\checkmark	x	x	\times	-	108-109
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	110-123
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	124-127
\times	\times	x	x	\checkmark	-	128-133
x	x	x	x	x	\checkmark	136-147
x	\checkmark	\times	x	\times	-	148-154
\checkmark	\checkmark	\checkmark	x	\times	-	156-167
\times	\times	\times	x	x	-	168-171
\checkmark	\checkmark	x	\checkmark	x	-	172-173
x	x	\times	x	\times	x	174-175

We are a medium-sized company engaged in the development, production and sale of products for the construction sector. To this end, we supply products
for the areas of timber-frame construction, deck construction and concrete fastening. We supply specialist dealers across Europe, who are responsible for distribution to skilled craftsmen.

OUR MILESTONES

1999

The two managing directors, Gregor Mamys and Markus Rensburg, founded Eurotec GmbH on 1 May 1999. The company began its life in a small basement with an adjoining garage, whose 5 pallet bays served as a warehouse.

2003

After multiple relocations within Hagen, the decision was made in 2003 to move to a company building in Werkzeugstraße. At the time, the warehouse had space for approx. 300 pallet bays.
This warehouse also quickly became too small. After several expansions, capacity ran out and it was time for a new company building! The managing directors looked for and found a suitable location in Hagen.

2007

In 2007, the Eurotec team and its 30 members of staff moved into the new building at Unter dem Hofe 5 . These newly built premises consisted of an office wing and an adjoining warehouse with approx. 3,500 pallet bays.

2010

Just three years later, the new building would, in turn, become the old building. A new warehouse building was built, providing a further 7,500 pallet bays and offices upstairs.

2012

In 2012, we decided to take the next important step. The foundation stone was laid for the production hall, paving the way for in-house production.

2013

From 7 January 2013 onwards,we produced a selected part of our proprietary product range in our own production hall in Hagen.

2014

In 2014, intensive work began on further expanding in-house production.

2015

Production capacity is expanded in 2015 to enable us to offer a wide range of solutions from our very own production facilities.

2016

In 2016, the company starts actively to build a new hall to relocate its machinery. Additional office space is being created in Hagen, since the company is enjoying steady growth. The next step is to expand the storage capacities in what was formerly the machinery hall.

2018

Completion of the new production hall in early 2018 means that all of the machinery can be moved. Construction work starts on another warehouse.

2019

On 1 May 2019 we celebrated our company's 20th anniversary. The injection moulding is extended by two additional injection moulding machines to a total of four machines. In addition the screw production is expanded by another multi-stage press. So we now have a total of five machines for screw production at our disposal.

2021

Our fleet of machinery continues to grow. Two more plastics machines will be added to our company's stock this year. We are expanding our online offering also, with the valuable Eurotec Coach and Eurotec BIM online portal.

Gurotec

INHOUSE PRODUCTION IN HAGEN

When production began in 2013, we took an important step forward in the company's history. Our success and ever-growing production facilities show that we are establishing ourselves in the market with our producs. The benefits of in-house production are obvious, as we can better implement and constantly monitor our customers' high quality requirements. Short delivery times and swift responses to the demand of the market are additional advantages.

QUALITY MANAGEMENT

Quality forms the basis for all of Eurotec's activities. Offering our customers flawless products and services and ensuring 100% adherence to deadlines are our prime objectives.
We expect an unreserved commitment to quality from each of our employees. Training and further development of customer- and qualityoriented mindset and acting is always in the priority.
The compliance with legal and regulatory requirements in an economic framework, while promoting environmentally conscious action, is an obligation for us.
QUALITY FROM EUROPE - AND WE'RE PROUD OF IT!

CALCULATIONS AND PLANNING

Gladly we will advise you on your construction projects.
Contact our engineering department or use the free calculation software in the service section of our website:

www.eurotec.team

For calculations and planning in the areas of terrace construction, timber construction, concrete, façade, we are happy to assist you.

Gurotec

SCREW PRODUCTION

Since the start of production in 2013, production has expanded steadily. We now manufacture an ever-increasing part of our screw range ourselves at the Hagen site. These include a number of special construction screws, for example, including the KonstruX fully threaded screws or Topduo roofing screws.

We make cold formed parts with a diameter of up to 10 mm and a length of up to $1,000 \mathrm{~mm}$ in our production facility. We can automate up to 8 machining steps on our machines, which makes our work very cost-effective. Relocating the production facilities to a bigger hall meant that this area would also be expanded to include additional machines.

Gurotec

QUALITY ASSURANCE AND CERTIFICATIONS

Our ulimate goal is to provide our customers with flawless products and services. We also guarantee 100% adherence to delivery dates. We expect every one of our employees to commit to quality unwaveringly. Training and further development of customer- and quality-oriented ways of thinking and acting are always in focus. We feel duty-bound to comply with legal and regulatory requirements and within a given an economic framework, while at the same time promoting environmentally conscious action.

We are proud of the fact that almost all of our products in the wood, façade and concrete segments are ETA-cerifified. It goes without saying that our quality assurance does daily checks on the batches produced for standards such as conformity to drawings, functionality, appearance, and compliance with customer-specific specifications. That is the only way we can be sure to deliver the consistently high quality our customers have come to expect from us.

Gurotec COACM

On construction site, not all processes run according to plan and sometimes there may be a lag of technical understanding, basic knowledge or the correct organisation of the workflow. With our new format Eurotec Coach we provide all the required knowledge with the help of videos, brochures and expert articles which you require to become a pro!

OUR BIM-ONLINE PORTAL - ALL DATA AT ONE SIGHT

Many people are involved in the construction of a building, such as architects, planners, craftsmen and service providers. All these people need important data and information for their work.

In our new Eurotec BIM online portal, we provide you with up-to-date BIM-relevant data for our product range.

You have full access to 3D/CAD data, DWG files, important product information, ETA certifications and much more. All functions of the portal are
available to you free of charge! The download of the files is possible after a quick registration.

CIT BASICS

CLT (Cross Laminated Timber) panels consist of several layers of wooden boards stacked crosswise typically at an angle of 90 degrees). They are glued together on their broad faces and sometimes also on the narrow faces.

A cross-section of a CLT element has at least three bonded sheet layers arranged in an alternating way and orthogonal to the adjacent layers. In special configurations, successive layers can be arranged in the same direction, creating a double layer for example, double longitudinal layers on the outer surfaces and/or additional double layers at the core of the panel) to achieve specific structural capacities.

CLT products will typically be manufactured with an odd number of layers. Gluing three to seven layers together is common. The thickness of the individual layers of wood can vary from 16 mm to 51 mm , while the width can vary from about 60 mm to 240 mm .

The panel sizes vary depending on the manufacturer. Typical widths are $0.6 \mathrm{~m}, 1.2 \mathrm{~m}, 2.4 \mathrm{~m}$, and 3 m . The length can be up to 18 m . In special cases, the thickness can be up to 500 mm . Typical thicknesses are between 60 and 300 mm , however.
(Transport regulations may limit the CLT panel sizes).
The timber in the outer layers of the CLT panels that are used as walls are aligned up and down, parallel to the gravity loads, to maximise the vertical loading capacity of the wall. Similarly, in floor and roof systems, the outer layers run parallel to the main tension direction.

ADVANTAGES OF BUIIDING WITH CLT

- CLT allows screw connection in any direction, irrespective of the grain direction, as the layering of the boards means that no grain direction has to be observed.
- Reduced construction time due to prefabrication of the elements

Enables almost film-free construction due to the diffusion-open properties of the CLT elements.

- CLT has both sound and heat insulating properties.
- A wide range of architectural design options.
- All components of a house (walls, ceilings, and roof) can be made of CLT.
- Lower weight compared to concrete and bricks
- No construction waste when demolishing buildings. CLT is completely ecologically recyclable.

PRODUCTION OF CLT

1

The boards are sorted after the soffwood boards have gone through a drying process (more than 48 hours). Growth deviations in the wood that would reduce the strength, or are simply unsightly, are marked. The sections that have such defects are cut out.

The boards of different lengths are joined together to create an almost endless strand of wooden boards, which is necessary for CLT production. This is done by means of finger joints. The resulting boards are then planed to eliminate thickness deviations between the boards.

The manufactured boards are applied manually or mechanically to form a layer. Adhesive is applied to the resulting surface after a layer has been completely applied. The most common method here is a glue curtain through which the layer is passed.

4

Another layer is placed on top of the glued layer. This is aligned so that the fibre direction of the new layer runs at an angle of 90° to the fibres of the board below. Glue is then applied to the new layer also. This process is repeated until the desired number of board layers is achieved.

Once the desired number of layers is reached, the glued lamellas are pressed. The size of the press bed determines the possible panel size. As soon as the adhesive has cured, the CLT panel is reworked to remove any dirt, adhesive residues, or protruding wood. This is done by planing and grinding the CLT panel.

BUIILING WITH CROSS LAMINATED TIMBER

The construction phases of modern timber construction methods, such as building with cross laminated fimber, are very different from that of the conventional solid construction method. Whereas with solid construction most of the work takes place on the building site, with timber construction much of the work has now shifted from the construction site to the factory.

The keyword here is prefabrication. All wall, ceiling, and roof elements are delivered to the construction site not as unprocessed CLT panels and thus raw material. They are prepared in special joinery centres for later assembly.

In the CNC joinery centres, the manufactured CLT panels are further processed into individual elements. All necessary work that is required on the construction site for fasteners of all kinds and/or for geometries that would be too difficult to realise on the construction site, is carried out here. Common joinery work carried out in the factory includes:

- Windows and door cut-outs
- Angled cuts in the gable area
- Cuts and notches
- Milling of folding systems (for example: joint deck board fold, tier fold)
- Special geometries for special connectors

Such complex processing steps, especially through the use of computer-controlled processing machines, increase the amount ofu pfront planning work. Positions for connectors and installations within the house (electrical/water) must be able to be provided with the necessary information. Furthermore, care is taken to ensure that all components are matched to each other to the millimetre in the final assembly, so that there are no problems in the final assembly.

E-Trdice
Wood connectors
Mooq couveojots

| | |
| :--- | :--- | :--- |

Gurotec

CLT SYSTEM INSIDE CORNER
 DEVELOPED FOR MODERN TIMBER CONSTRUCTION

ADVANTAGES

- Combining several CLT system inside corners, an effective connection of different elements with each other is created
- Fewer connectors required
- Versatile applications

INSTRUCTIONS FOR USE

The CLT system inside corner can be used to connect internal corners with each other. It can be used both individually and in combination with several CLT system inside corners. A hexagon head screw can be led from one element, through the wall, to the other element, for this purpose. If this is applied in all possible directions, a stable construction for wall nodes is created. This can also be achieved with the combination of our IdeeFix. Although the individual corners are not directly connected to each other, it results in a very secure connection between the wall and ceiling or floor elements.

Versatility is very important to us. One of our new products is the CLT system inside corner. A strong connection of wall nodes is achieved when it is used in combination. The inside corner is also an unbeatable solution for timber-timber connections at corner points.

Gurotec

CLT SYSTEM INSIDE CORNER - COMBINATION

The CLT system inside corner is an extremely combinable connector. Wall nodes can be connected in a number of different ways.

A construction can be extremely strengthened by connecting several interior corners of a system through the wood. This can be achieved with our IdeeFix or also hexagonal bolts, for example. There are numerous possibilities.

In contrast to using the connector individually (see examples), the most force can be absorbed and distributed when the internal corners of the system are positioned opposite each other.

With KonstruX and IdeeFix

With KonstruX and Hexagon head screw M16

CLT SYSTEM INSIDE CORNE

HEXAGON HEAD SCREWS (ACCORDING TO MATERIAL THICKNESS|

Common combination example

With Hexagon head screw M16 built into ceiling and walls

Partial construction from two system inside corners in combination with the IdeeFix

Eurotec

POSSIBLE APPLICATIONS

WALL JUNCTION - VISIBLE SOLID WOOD CEILING

CANTILEVER STRUCTURES

Gurotec

CLT SYSTEM ANGLE
 developed for modern tmber construction

ADVANTAGES

- High load bearing capacity
- Versatile applications
- Compatible with SKO4

DESCRIPTION

The CLT system angle is ideally suited for use in solid timber construction. The scope of application is limited to the use of CLT (cross-laminated timber). The solid construction allows it to transmit major forces. In contrast to the standard angles (on the following pages), the system angle CLT can be combined with our IdeeFix. This makes it possible to construct complex connections.

INSTRUCTIONS FOR USE

Either $5 \times 60 \mathrm{~mm}$ angle fiting screws or the Paneltwistec $5 \times 120 \mathrm{~mm}$, in combination with the KonstruX CH $10 \times 125 \mathrm{~mm}$, are used for the CLT system angle. When used with IdeeFix, only 4 IdeeFix and 4 KonstruX are needed - see application picture. It is possible to combine IdeeFix and screw bolts through a wall also. The load values, which are regulated according to ETA, must be observed. For further information, please contact our technical department technik@eurotec.team or +492331 6245-444.

Art. no.	Name	Dimensions [mm] ${ }^{\text {a/ }}$	Material	Material thickness [mm]	PU
954180	CII sysiem angle	$230 \times 80 \times 120$	S250 Gavanised	4	1

KonstruX + Angle-bracket screw $5 \times 60 \mathrm{~mm}$
KonstruX + Ideefix

KonstruX + Angle-bracket screw + IdeeFix

Connected with M16 hexagon head screws

Eurotec

CLT SYSTEM ANGLE - STATIC VALUES

Load direction FI; F2/F3;/F5												
Vertical leg connection Angle-hracket screw $05 \mathrm{~mm} \mathrm{n}=43$	5,0x 40	5,0 50	5,0 60	5,0x 70	5,0×40	5,0×50	$5,0 \times 60$	5,0x70	5,0 40	5,0 50	$5,0 \times 60$	5,0x70
Horizontal leg connection	Angle-bracket screw $5,0 \times 40$ $n=43$	Angle-bracket screw 5,0 x 50 n=43	Angle-bracket screw 5,0 $\times 60$ n=43	Angle-bracket screw $5,0 \times 70$ $n=43$	$\text { IdeeFix } 040$ n=3	Ideefix@ 40 n=3	Ideefix 040 n=3	Ideefix 040 $\mathrm{n}=3$	$\begin{gathered} \text { M16 } 8.8 \\ \mathrm{n}=3 \end{gathered}$	$\begin{gathered} \text { M16 } 8.8 \\ n=3 \end{gathered}$	$\begin{gathered} \text { M16 } 8.8 \\ n=3 \end{gathered}$	$\begin{gathered} \text { M16 } 6.8 \\ \mathrm{n}=3 \end{gathered}$
	Konstrux $10 \times 125 \mathrm{n}=4$											
	55,8	62,4	69,1	75, 7	43,1	43,1	43,1	43,1	43,1	43,1	43,1	43,1
$F_{23,12 k}[\mathrm{kN}]$	49,1	58,3	62,1	66,0	49,1	55,9	55,9	55,9	49,1	58,3	$\begin{aligned} & 62,1 \\ & 60,5 \end{aligned}$	$\begin{aligned} & 66,0 \\ & 60,5 \end{aligned}$
F5, Rk pull \perp on $\mathrm{CLI}[\mathrm{kN}]$	6,9	6,9	6,9	6,9	6,9	6,9	6,9	6,9	6,9	6,9	6,9	6,9

Lood direction Fl ; F2/F3; /F5						
Vertical leg connection	$\text { Ideefix } 040$ $\mathrm{n}=3$	IdeeFix 040 $\mathrm{n}=2$	IdeeFix 040 $\mathrm{n}=3$	$\begin{gathered} \text { Ideefix } \emptyset 40 \\ n=2 \end{gathered}$	Ideefix 040 $\mathrm{n}=3$	Ideefix 040 $\mathrm{n}=2$
Horizontal leg connection	$\begin{gathered} \text { Angle-bracket screw } \\ 5,0 \times 40 ; 50 ; 60 ; 70 \mathrm{n}=43 \end{gathered}$	$\begin{gathered} \text { Angle-bracket screw } \\ 5,0 \times 40 ; 50 ; 60 ; 70 \mathrm{n}=43 \end{gathered}$	IdeeFix 040 $n=3$	$\text { Ideefix } 040$ $\mathrm{n}=2$	$\begin{gathered} \text { M16 } 8.8 \\ n=3 \end{gathered}$	$\begin{gathered} \text { M16 } 6.8 \\ \mathrm{n}=2 \end{gathered}$
	Konstru 10 x 125n=4					
F_{1}, Rkpull [kN]	43,1	29,9	43,1	29,9	43,1	29,9
$F_{23,}$, $\mathrm{lk}[\mathrm{kN}]$	26,0	22,3	26,0	22,3	26,0	22,3
F_{5}, Rk pull \perp on $\mathrm{CLT}[\mathrm{kN}]$	4,8	4,8	4,8	4,8	4,8	4,8

Load direction F1; F2/F3; /F5						
Vertical leg connection	$\begin{gathered} \text { M16 } 8.8 \\ \mathrm{n}=3 \end{gathered}$	$\begin{gathered} \text { M16 } 8.8 \\ n=2 \end{gathered}$	$\begin{gathered} \text { M16 } 8.8 \\ n=3 \end{gathered}$	$\begin{gathered} \text { M16 } 8.8 \\ n=2 \end{gathered}$	$\begin{gathered} \text { M16 } 8.8 \\ n=3 \end{gathered}$	$\begin{gathered} \text { M16 } 6.8 \\ \mathrm{n}=2 \end{gathered}$
Horizontal leg connection	$\begin{gathered} \text { Angle-bracket screw } \\ 5,0 \times 40 ; 50 ; 60 ; 70 n=43 \end{gathered}$	Angle-bracket screw $5,0 \times 40 ; 50 ; 60 ; 70 n=43$	Ideefix 040 $\mathrm{n}=3$	IdeeFix $\varnothing 40$ $\mathrm{n}=2$	$\begin{gathered} \text { M16 } 8.8 \\ n=3 \end{gathered}$	$\begin{gathered} \text { M16 } 6.8 \\ \mathrm{n}=2 \end{gathered}$
	Konstrux 10x $125 \mathrm{n}=4$					
$F_{1, ~ \text { Rk pull [kN] }}$	43,1	43,1	43,1	29,9	43,1	$\begin{gathered} 43,1 \\ 36,7 \end{gathered}$
F23, $\mathrm{Rk}[\mathrm{kN}]$	$\begin{gathered} 34,4 \\ 29,3 \end{gathered}$	$\begin{aligned} & 29,6 \\ & 25,2 \end{aligned}$	$\begin{gathered} 34,4 \\ 29,3 \end{gathered}$	$\begin{aligned} & 29,6 \\ & 25,2 \end{aligned}$	$\begin{aligned} & 34,4 \\ & 29,3 \end{aligned}$	$\begin{aligned} & 29,6 \\ & 25,2 \end{aligned}$
F5, Rk pull \perp on [LIT[kN]	4,8	4,8	4,8	4,8	4,8	4,8

$F 4$, $\mathrm{Rk}=54 \mathrm{kN}$ pressure \perp on CLT ; independent of connections.
For connections with M18 8.8 if bolt head or nut is not located on CLI: Washer with $d_{0}=40 \mathrm{~mm}$.
$\rho \mathrm{k}=350 \mathrm{~kg} / \mathrm{m}^{3}$ conservative for some approved cross-laminated timber, increase of load-bearing capacities according to ETA-19/0020 with kdens $=\left(\frac{\rho_{\mathrm{k}}}{350 \mathrm{~kg} / \mathrm{m}^{3}}\right)$ possible.
The construction of the supporting structure should prevent the twisting of the cross laminated timber components.
In case of connection with CLI system angles on both sides, the values of this table may be applied for each of the two angles. The values for F23, Rk only change for the connection with M16 screws.
In other words, the values in italics must be used if CIT system brackets are fitted to the top and bottom of the ceiling.

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

SHEARING ANGLE

CONNECTOR DEVELOPED FOR MODERN TMBER CONSTRUCTION TO ABSORB SHEAR FORCES

ADVANTAGES

- Many different fields of application
- For installation in timber-concrete, as well as timber-timber connections
- Very high shear load-bearing capacity
- Fewer connectors required

In combination with the pressure plate, the following tensile forces can be absorbed when fixing in concrete.

DESCRIPTION

The shearing angle is an angle bracket for absorbing shearing forces. This product was specifically developed for modern timber construction. Thanks to various holes for anchoring in timber and concrete, our shearing angle can be used in timber frame as well as solid timber construction.

Art. no.	Name	Dimensions [mm]	Material	Material thickness [mm]	PU
954112	Schervinkel	230×120	5250 Galvanised	3	1

Shearing angle for fixing a wall to the concrete foundation.

| Shearing angle pressure plate | Art. no. | Dimensions $[\mathrm{mm}]$ | Material | Material thickness $[\mathrm{mm}]$ | PU |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 954111 | 230×70 | 5235 Gavanised | 12 | 1 |

SHEARING ANGLE - STATIC FULL UTILISATION VALUES

Load direction F2/F3						
Connection Timber-Iimber						
Verical leg cornection	Anchor nails $84 \times 40 \mathrm{n}=41$	Anchor nails $9 \times 50 \mathrm{n}=41$	Anchor nails $84 \times 60 \mathrm{n}=41$	Angle-hrocket screw $05 \times 40 \mathrm{n}=41$	Anglebracketescrew $05 \times 50 \mathrm{n}=41$	Angle-hrackestrew $05 \times 60 \mathrm{n}=41$
	Panelwisisec CH $05 \times 120 \mathrm{n}=6$					
Horizontal leg comnection	Anchor nails $04 \times 40 \mathrm{n}=41$	Anchor nails $4 \times 50 \mathrm{n}=41$	Anchor nails $84 \times 60 \mathrm{n}=41$	Angle-hracket screw $05 \times 40 \mathrm{n}=41$	Angle-bracketescrew $05 \times 50 \mathrm{n}=41$	Angle-hrackestrew $05 \times 60 \mathrm{n}=41$
	Panelwisistec $\mathrm{CH} 05 \times 120 \mathrm{n}=6$					
Char. Sheer carrying capacity [kN]	30,5	36	37,2	41,9	44,6	47,6
Char. Sheer carrying capacity [KN] (Use of Sonote SK04)	22,6	26,6	27,5	32,7	34,8	37,1

 The minimum distanes between the comnetors and the edges according to EC 5 must be complied with.

Lood direction F2/F3												
Connection Timber-Concrete												
Vericial leg comection	Anchor nails $04 \times 40 n=41$	Anchor noils $04 \times 40 n=41$	Anchor nails $04 \times 50 n=41$	Anchor nails $04 \times 50 \mathrm{n}=41$	Anchor nails $04 \times 60 n=41$	Anchor nails $04 \times 60 n=41$	$\begin{gathered} \text { ABS } \\ 05 \times 40 n=41 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 05 \times 40 \mathrm{n}=41 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 05 \times 50 \mathrm{n}=41 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 05 \times 50 \mathrm{n}=41 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 05 \times 60 \mathrm{n}=41 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 05 \times 60 \mathrm{n}=41 \end{gathered}$
Paneltwistec CH $05 \times 120 \mathrm{n}=6$												
Horizontal leg comection 0	Rock concretes screw $012,5 \times 120 \mathrm{n}=2$	Bolt anchor $012 \times 110 \mathrm{n}=2$	Rock concrete screw $012,5 \times 120 \mathrm{n}=2$	Bolit anchor $012 \times 110 n=2$	Rock concretes screw $012,5 \times 120 \mathrm{n}=2$	Bolt anchor $012 \times 110 n=2$	Rock concrete screw $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Boltanchor } \\ 012 \times 110 n=2 \end{gathered}$	Rock concretes screw $012,5 \times 120 \mathrm{n}=2$	Bolt anchor $012 \times 110 n=2$	Rock concrete screw $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \mathrm{n}=2 \end{gathered}$
ind. pressure plate 230×70												
Char.-shearing capacity [kN]	30,5	23,4	36,0	23,4	37,2	23,4	41,9	23,4	44,6	23,4	47,6	23,4

The lood-bearing capacities were determined based on ETA-19/0020 Characterisici lood-bearing capacity in kN , wood strength lass $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density. The minimum distances between the connectors and the edges according to EC 5 must be complied with.

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Eurotec

PARTIAL UTLISATION 1

Lood direction F2/F3						
Cometion Timber-Iimber						
Vericicl leg connection	Anthor nils $04 \times 40 \mathrm{n}=34$	Anctor nilis $84 \times 50 \mathrm{n}=34$	Anchor nails $04 \times 60 n=34$ Paneltwistec CH	$\begin{aligned} & \text { ABS } 85 \times 40 \mathrm{n}=34 \\ & \times 120 \mathrm{n}=6 \end{aligned}$	ABS $05 \times 50 \mathrm{n}=34$	AB5 $55560 \mathrm{n}=34$
Horiontidl leg comection	Anctor noils $04 \times 40 \mathrm{n}=34$	Anctor nils $84 \times 50 \mathrm{n}=34$	Anchor nails $84 \times 60 \mathrm{n}=34$ Paneltwisec CH	$\begin{aligned} & \text { ABS } 05 \times 40 n=34 \\ & \times 120 n=6 \end{aligned}$	ABS $05 \times 50 \mathrm{n}=34$	ABS $05 \times 60 \mathrm{n}=34$
Chor:shearing capaity [KN]	23,9	28,1	29,1	32,7	34,9	37,2
Char: shearing capaity [kV] (use Sonoter SK04)	17,1	20,8	21,5	25,5	27,2	29

Load direction F2/F3												
Comection Timber-Onrcete												
Vericial leg connection	Anchor nails 04×40 $n=34$	Anchor noils 04×40 n=34	Anchor nails 04×50 $n=34$	Anchor nails 04×50 n=34	Anchor nails 04×60 $n=34$	Anchor nails 04×60 $n=34$	$\begin{gathered} \text { ABS } \\ 05 \times 40 \\ n=34 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 05 \times 40 \\ n=34 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 05550 \\ n=34 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 05 \times 50 \\ n=34 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 95 \times 60 \\ n=34 \end{gathered}$	$\begin{gathered} \text { ABS } \\ 05 \times 60 \\ n=34 \end{gathered}$
Pandtwistec CH $05 \times 120 \mathrm{n}=6$												
Horizontiol leg comnection	$\begin{aligned} & \text { Rock concrefe } \\ & \text { screw } \\ & 012,5 \times 120 \\ & n=2 \end{aligned}$	Bolt anchor 012×110 $\mathrm{n}=2$	$\begin{gathered} \text { Rock oncrete } \\ \text { screw } \\ 012,5 \times 120 \\ n=2 \end{gathered}$	Bot anchor 012×110 $\mathrm{n}=2$	$\begin{aligned} & \text { Rodk concrefie } \\ & \text { screve } \\ & 012,5 \times 120 \\ & n=2 \end{aligned}$	Bolt anchor 012×110 $\mathrm{n}=2$	$\begin{aligned} & \text { Rock concrefe } \\ & \text { screw } \\ & 012,5 \times 120 \\ & n=2 \end{aligned}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \\ & n=2 \end{aligned}$	$\begin{gathered} \text { Rock concrete } \\ \text { screw } \\ 012,5 \times 120 \\ n=2 \end{gathered}$	Bolt anchor 012×110 $\mathrm{n}=2$	$\begin{gathered} \text { Rock concrefe } \\ \text { scew } \\ 012,5 \times 120 \\ n=2 \end{gathered}$	$\begin{aligned} & \text { Bolt anthor } \\ & 012 \times 110 \\ & n=2 \end{aligned}$
ind. pressure plate 330×70												
Char:shearing crpacity [kN]	23,9	23,4	28,1	23,4	29,1	23,4	32,	23,4	34,9	23,4	37,2	23,4

The load.bearing capacities were defermined bosed on EA-19/0020 Characterisisic load-bearing capacity in KN , wood strenght loss $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. GToss density.
The minimum distances bewven the comnectors and the edges according to EC 5 must be complied with.
 As per LBuO, plesse contuct a qualified strutural engineer for a poid proof of stability. We will be happy to efere yo to someone.

Note

All values given refer to the drilling pattern shown. We recommend using this as it has a considerably higher shear carrying capacity compared to the rear holes

PARTIAL UTILISATION 2

Lood direction F2/F3														
Connection Timber-Timber														
Vertical leg connection			Anchor noils $04 \times 40 \mathrm{n}=29$		Anchor nails $04 \times 50 \mathrm{n}=29$		9 Anchor nails $04 \times 60 \mathrm{n}=29$		Angle-bracket screw$05 \times 40 n=29$			Angle-bracket screw $05 \times 50 n=29$	Angle-bracket screw$05 \times 60 n=29$	
			Paneltwistec CH05 $\times 120 \mathrm{n}=4$											
Horizontal leg connection			Anchor nails $04 \times 40 \mathrm{n}=29$		Anchor nails $84 \times 50 \mathrm{n}=29$		29 Anchor nails $04 \times 60 \mathrm{n}=29$		Angle-bracket screw $05 \times 40 n=29$			Angle-bracket screw $05 \times 50 n=29$	Angle-bracket screw$05 \times 60 n=29$	
			Panethwistec CH05 $\times 120 \mathrm{n}=4$											
Char. Shear carrying capacity [KN]			19,3			22,8	23,6		26,5			28,3	30,1	
Char. Shear carrying capacity [KN] (USe of Sonotec SK04)			14,3			16,9		17,5	20,1			22,1	23,5	
Lood direction F2/F3														
Connection Timber-Concrete														
Vertical leg connection	Anchor noils $04 \times 40 n=29$	$\begin{gathered} \text { Anchor nails } \\ 04 \times 40 n=29 \end{gathered}$	Anchor nails $04 \times 50 n=29$	$\begin{gathered} \text { Anchor nails } \\ 04 \times 50 \mathrm{n}=29 \end{gathered}$		Anchor nails $04 \times 60 n=29$	Anchor nails $04 \times 60 n=29$	Angle-bracket screw 05×40 $\mathrm{n}=29$	Angle-bracket screw 05×40 n=29	Angle-bracket screw 05×50 $\mathrm{n}=29$		Angle-bracket screw 05×50 $\mathrm{n}=29$	Angle-bracket screw 05×60 $\mathrm{n}=29$	Angle-bracket screw 05×60 $\mathrm{n}=29$
	Paneltwistec CH0 $5 \times 120 \mathrm{n}=4$													
Horizontal leg connection	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \mathrm{n}=2 \end{aligned}$	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \mathrm{n}=2 \end{gathered}$			Bolt anchor $012 \times 110 n=2$		$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 n=2 \end{aligned}$	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$		$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \mathrm{n}=2 \end{gathered}$	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \mathrm{n}=2 \end{gathered}$
	ind. pressure plate 230×70													
Char-Schertragfitiothkeit [kN]	19,3	19,3	22,8	22,		23,6	23,4	26,5	23,4		28,3	23,4	30,1	23,4

The load-bearing capacities were determined based on ETA-19/0020 Characteristic load-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density.
The minimum distances between the connectors and the edges according to EC 5 must be complied with.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

HB FLAT SHEARING ANGLE

CONNECTOR DEVELOPED FOR MODERN TIMBER CONSTRUCTION TO ABSORB SHEAR FORCES

ADVANTAGES

- For assembly on concrete
- Very high shear load-bearing capacity
- Fewer connectors required
- In combination with the pressure plate, the following tensile forces can be absorbed when fixing in concrete.

DESCRIPTION

The HB flat shearing angle (wood-concrete) is a bracket connector for absorbing shearing forces that was specifically developed for modern timber construction. Its low height means it is ideally suited to use in timber frame construction. The pressure plate allows the occurring loads to be optimally conducted into the concrete.

Art. no.	Name	Dimensions [mm] ${ }^{\text {a/ }}$	Material	Material thickness [mm]	PU
954087	HB lat shearing ongle	$230 \times 100 \times 70$	S250 Gavanised	3	I
954111	Pressure plate Shearing angle	230×68	S235 Gavanised	12	1

a) Length x Width x Height

HB flat shearing angle with pressure plate for fixing a wall to the concrete foundation.

Lood direction F2/F3; F4		
Comection Timber-Concrete		
Vericial leg connection	$\begin{aligned} & \text { Angle-fracketescrew } 05 \times 25 n=3 \\ & \text { Panelwisisec CH } 45 \times 120 n=12 \end{aligned}$	
Horizontiol leg comnection	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	Boltanchor $912 \times 110 \mathrm{n}=2$
	ind. pressure plat $230 \times 68 \times 12$	
Char. Sherr carrying capacity $\mathrm{F}_{23}[\mathrm{KN}]$	40,0	23,9
Char. bearing capacity $\mathrm{F}_{4}[\mathrm{KN}]$	40,0	40,0

Please note: Verify the assumpions made. The stated values, and type and number of joining devices are based on preiminary measurements. Projects are to be dimensioned excusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Note

All values given refer to the drilling pattern shown. We recommend using this as it has a considerably higher shear carrying capacity compared to the rear holes.

HB flat shearing angle with Paneltwistec CH

Gurotec

HH FLAT SHEARING ANGLE

CONNECTOR DEVELOPED FOR MODERN TIMBER CONSTRUCTION TO ABSORB SHEAR FORCES

ADVANTAGES

- For assembly on timber
- Very high shear load-bearing capacity
- Fewer connectors required
- Especially high tensile forces can be absorbed in combination with the KonstruX

DESCRIPTION

The HH flat shearing angle (wood-wood) is a bracket connector for absorbing shearing forces that was specifically developed for modern timber construction. Its low height means it is ideally suited to use in timber frame construction.

$\left.\begin{array}{l|l|l|l|c|}\hline \text { Art. no. } & \text { Name } & \text { Dimensions }[\mathrm{mm}]^{0]} & \text { Material } & \text { Material thickness }[\mathrm{mm}]\end{array}\right]$ PU
a) Length x Width

HH flat shearing angle for fixing a wall to the wooden floor of the upper level.

Lood direction F2/F3; F4	
Connection Wood-Wood	
Vericall leg connection	$\begin{gathered} \text { ABS } 05 \times 25 n=3 \\ \text { Peneltwistec CH } 05 \times 120 n=12 \end{gathered}$
Horizonitiol leg comnection	$\begin{gathered} \text { ABS } \varnothing 5 \times 25 \mathrm{n}=3 \\ \text { Paneltwistec CH } 05 \times 120 \mathrm{n}=12 \end{gathered}$
Char:shearing capacity $\mathrm{F}_{23}[\mathrm{KN}]$	40,0
Char:Shearing capacity $\mathrm{F}_{23}[\mathrm{KNJ}$ ((sse Sonotes SYO4)	36,0
Chor:- lood.bearing capacity $\mathrm{F}_{4}[\mathbf{k}]$	40,0
Char: Oood.bearing capacity $\mathrm{F}_{4}[\mathrm{KNV}$ (use Sonoer SKO4)	36,0

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary meassurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

HH flat shearing angle with Paneltwistec CH

Eurotec

SHEARING PLATE

CONNECTOR DEVELOPED FOR MODERN TIMBER CONSTRUCTION TO ABSORB SHEAR FORCES

ADVANTAGES

- Very high shear load-bearing capacity
- Many different fields of application
- For installation in wood-concrete, and wood-wood connections

Fewer connectors required

INSTRUCTIONS FOR USE

6 slanted screw connection holes and 41 holes each side, which are optionally intended for angle-bracket screws (ABSs) or anchor nails, are provided for anchoring in wood. Depending on the application, we have provided two additional partial utilisations of the fixing holes which are also available as static-type calculations. Anchoring in concrete is carried out using the holes $(\varnothing 14 \mathrm{~mm})$ provided for this purpose with our Rock concrete screw \varnothing 12,5 mm or bolt anchors $\varnothing 12 \mathrm{~mm}$.

Art. no.	Name	Dimensions $[\mathrm{mm}]$	Material	Material thickness $[\mathrm{mm}]$	PU
954113	Shearing plate	230×240	S250 Gavanised	3	1

SHEARING PLATE - STATIC FULL UTILISATION VALUES

Lood direction F2/3								
Timber-Timber	Fixing in the sole plate and solid timber ceiling							Steel
	Joining devices							
	Anchor noils			Angle-bracket screw			Paneltwistec 대	5250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	
Quantity (n)		41			41		6	
Char. shearing capacity [KN]	30,5	36	37,2	41,9	44,6	47,6	.	156

				Load						
Timber-Concrete	Fixing in the sole plate							Fixing in the con	crete ceiling	Steel
	Joining devices									
	Anchor nails			Angle-hracket screw			Paneltwistec (H	Rock concrete screws	Bolt anchor	5250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	012,5	012	
Quantity (n)		41			41		6	2	2	
Char. Shearing capacity [kN]	30,5	36	37,2	41,9	44,6	47,6	-	21,8	12,2	156

The lood-bearing capacities were determined on the basis of ETA-19/0020. Characterisici lood-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. gross density.
The minimum edge distances for joining devices according to EC 5 must be observed.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned extusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Anchor nails	CE	Art. no.	Dimensions	Material	PU
With flat head	(1)	20024	4,0 40	Galvanised	250
		20024	4,0×50	Galvanised	250
		20022	$4,0 \times 60$	Galvanised	250

Suitable for use wih:

Shearing angle (p. 28), Shearing plate (p. 36)
Shearing angle HB flat (p. 32)
Shrearing angle HH flat (p. 34)
Tension strap $\mathrm{HB} / \mathrm{HH}(\mathrm{p} .40,42)$

Eurotec

PARTIAL UTLISATION 1

			direction					
Timber-Timber	Fixing in the sole plate and solid dimber ceiling							Steel
	Joining devices							
	Anchor nails			Angle-rracket screw			Paneltwistec CH	5250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	
Quantity (n)		34			34		6	
Char. Shearing capacity [kN]	23,9	28,1	29,1	32,7	34,9	37,2	-	156

				Loodd	F2/3					
Timber-Concrete	Fixing in the sole plate							Fixing in the concrete ceiling		Steel
	Joining devices									
	Anchor nails			Angle-bracket screw			Paneltwistec CH	Rock-concrete screws	Bolt anchor	5250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	012,5	012	
Quantity (n)		34			34		6	2	2	
Char. shearing capacity [KN]	23,9	28,1	29,1	32,7	34,9	37,2	-	20,5	11,6	156

The lood-bearing capacities were determined on the basis of ETA-19/0020. Characterisicic load-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. gross density. The minimum edge distances for joining devices according to E(5 must be observed.

PARTIAL UTILISATION 2

Looddirection F2/3								
Timber-Timber	Fixing in the sole plate and solid dimber ceiling							Steel
	Joining devices							
	Anchor nails			Angle-rracket screw			Paneltwistec CH	5250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	
Quantity (n)		29			29		4	
Char. shearing capacity [kN]	19,3	22,8	23,6	26,5	28,3	30,1		156

Load direction F2/3										
Timber-Concrete	Fixing in the sole plate							Fixing in the concrete ceiling		Steel
	Joining devices									
	Anchor nails			Angle-bracket screw			Paneltwistec CH	Rockconcrete screws	Bolt anchor	5250
Dimensions [mm)	4×40	4×50	4×60	5×40	5×50	5×60	5×120	012,5	012	
Quantity (n)		29			9		4	2	2	
Char. shearing capacity [kN]	19,3	22,8	23,6	26,5	28,3	30,1	-	14,4	11,2	156

The lood-bearing capacities were determined on the basis of ETA-19/0020. Characteristic lood-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. gross density.
The minimum edge distances for joining devices according to EC 5 must be observed.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

TENSION STRAP HB60 / HB70

CONNECTOR DEVELOPED FOR MODERN TMBER CONSTRUCTION TO ABSORB

TENSILE- AND SHEAR FORCES.

ADVANTAGES

- Very high shear load-bearing capacity
- Many different fields of application
- For installation in wood and concrete
- Fewer connectors required
- Can be used with or without a sill plate

INSTRUCTIONS FOR USE

Anchoring in wood is carried out using $5 \times 120 \mathrm{~mm}$ countersunk-head screws at an angle of 45°. Thanks to the holes specially provided for this purpose, which also serve as screw guides, a non-positive connection is created between the screw head and the tension strap. The anchoring in the concrete is achieved through the holes provided ($\varnothing 14 \mathrm{~mm}$) with our Rock concrete screw or Bolt anchor. The minimum distance of the concrete connector to the top edge of the foundation is 65 mm . Tension straps $\mathrm{HH} 7 \mathrm{O}(\mathrm{p} .42)$ and HB70 have two Ø 5 mm holes for 90° screw connection.

Suitable for use with:
Paneliwistec CH (p. 110), Bolt anchor (p. 168)
Anchor nails (p. 37), Rock concrete screw (p. 76)
Angle-bracket screw (p. 108)

Art. no.	Name	Dimensions [mm]	Material	Material thickness [mm]	PU
954095	Tension strap HB6O	506×60	S250 Gavanised	3	1
954097	Tension strap HB7O	506×70	S250 Gavanised	3	1

TENSION STRAP HB60 - STATIC VALUES

Lood direction Fl														
Connection Timber-Concrete														
Wood side connection	Paneltwistec CH $05 \times 120 \mathrm{n}=9$				Anchor nails $04 \times 40 \mathrm{n}=6$				Anchor nails $04 \times 50 \mathrm{n}=6$				Anchor nails $04 \times 60 \mathrm{n}=6$	
Concrete side connection	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=1$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=2$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \\ & n=1 \end{aligned}$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=2 \end{gathered}$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=1$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=1 \end{gathered}$	Bolt anchor 012×110 $n=2$	Rock concrete screws $012,5 \times 120$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=2$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \\ & n=1 \end{aligned}$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=2 \end{gathered}$	Rock concrete screws $\underset{\substack{0 \\ n=1 \\ n=1}}{ }$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=2$
Char. Shear carrying capacity [kN]	20,8*	20, ${ }^{\text {* }}$	12,6	20,8*	9,3	9,3	9,3	9,3	11,0	11,0	11,0	11,0	11,4	11,4

Lood direction Fl														
Connection Timber-Concrete														
Wood side connection	Anchor nails $04 \times 60 \mathrm{n}=6$		Angle-hracket screw $05 \times 40 n=6$				Angle-bracket screw $05 \times 50 \mathrm{n}=6$				Angle-hracket screw $05 \times 60 \mathrm{n}=6$			
Concrete side connection	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=1 \end{gathered}$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=2 \end{gathered}$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=1$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=1 \end{gathered}$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=2 \end{gathered}$	Rock concrete screws $\substack{012,5 \times 120 \\ n=1}$	Rock concrete screws $012,5 \times 120$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=1 \end{gathered}$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=2 \end{gathered}$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=1$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=1 \end{gathered}$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ n=2 \end{gathered}$
Char. Shear carrying capacity [kN]	11,4	11,4	10,9	10,9	10,9	10,9	12,0	12,0	12,0	12,0	13,1	13,1	12,6	13,1

* Concrete edge breakout for cracked concrete

The load-bearing capacities were determined based on EAA-19/0020 Characterisic load-bearing capacity in kN , wood strenght class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density.
The minimum distances between the connectors and the edges according to EC 5 must be complied with.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by cuthorised persons in accordance with the State Building Code.
As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

TENSION STRAP HB70 - STATIC VALUES

The lood-bearing capacities were determined based on ETA-19/0020 Characterisic load-bearing capacity in kN , wood strength dass $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density.
The minimum distances between the connectors and the edges according to EC5 must be complied with.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code.
As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

TENSION STRAP HH60/HH70

FOR ABSORBING TENSIIE FORCES AND TENSILE AND SHEARING FORCES DEVELOPED FOR

MODERN TIMBER CONSTRUCTION

ADVANTAGES

- Many different fields of application
- For installation in wood and concrete
- Very high shear load-bearing capacity thanks to a new fixing concept
- Fewer connectors required
- Thanks to its angled hole pattern, the tension strap can also absorb shear forces.

Inter-storey connector

INSTRUCTIONS FOR USE

The Tension strap HH 60 with its width of 60 mm is perfect for conventional timber frame construction, whereas the Tension strap HH70 with a width of 70 mm and its angled screw pattern was specially developed for solid wood construction. Anchoring in wood is carried out using $5 \times 120 \mathrm{~mm}$ countersunk-head screws at an angle of 45°. A forcefit connection is created between the screw head and the tension strap, thanks to the holes specially provided for this purpose, which also serve as screw guides. The Tension strap HH7O has two additional holes $\varnothing 5 \mathrm{~mm}$ which are intended for 90° screw connection.

Suitroble for use with: Paneltwistec $\mathrm{CH}(\mathrm{p} .110)$ Angle-bracket screw (p. 108), Anchor noils (p. 37)

Properties	HH60	HH70
Min. Wall/frame width:	60 mm	120 mm
Max. Ceiling thickness:	240 mm	260 mm

Art. no.	Name	Dimensions [mm]	Material	Material thickness [mm]	PU
954096	Tension strap HH60	680×60	5250 Galvanised	3	1
954098	Tension strap HH7O	740×70	S250 Galvanised	3	1

Tension straps $\mathrm{HH} 60 / \mathrm{HH} 70$ for fastening wall- and ceiling elements.

TENSION STRAP HH6O - STATIC VALUES

Load direction Fl								
Connection Timber-Timber								
Leg connection 1	$\begin{gathered} \text { Paneltwistec } \mathrm{CH} \varnothing 5 \times 120 \\ \mathrm{n}=9 \end{gathered}$	$\operatorname{Anchor~nails~} \wp 4 \times 40_{n=6}$	$\text { Anchor nails } \wp 4 \times 50$	$\begin{gathered} \text { Anchor noils } \wp 4 \times 60 \\ n=6 \end{gathered}$	$\begin{gathered} \text { Angle-bracket screw } 05 \times 40 \\ n=6 \end{gathered}$	$\begin{gathered} \text { Angle-bracket screw } 05 \times 50 \\ n=6 \end{gathered}$	$\begin{gathered} \text { Angle-brackets scew } 05 \times 60 \\ n=6 \end{gathered}$	Steel
Leg connection 2	$\begin{gathered} \text { Paneltwistec } \mathrm{CH} \subset 5 \times 120 \\ n=9 \end{gathered}$	Anchor nails 04×40 $\mathrm{n}=6$	$\begin{gathered} \text { Anchor nails } \varnothing 4 \times 50 \\ n=6 \end{gathered}$	Anchor noils 04×60 $n=6$	Angle-bracketscrew 05×40 $\mathrm{n}=6$	$\begin{gathered} \text { Angle-bracketscrew } 05 \times 50 \\ n=6 \end{gathered}$	Angle-brackets screw 05×60 $\mathrm{n}=6$	S250
Char. tensile capacity [kN]	27	9,4	11	11,4	10,9	12	13,1	28,5

The load-bearing capaciies were determined based on ETA-19/0020 Characterisicic load-bearing capacity in KN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density.
The minimum distances between the connectors and the edges according to EC 5 must be complied with.
Please note: Verity the assumptions made. The stated values, and type and number of joining devices are based on preliminary meassurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

TENSION STRAP HH70 - STATIC VALUES

Load direction Fl								
Connection Timber-Timber								
Leg connection I	$\begin{gathered} \text { Paneltwistec CH } \varnothing 5 \times 120 \\ n=12 \end{gathered}$	Anchor nails $\emptyset 4 \times 40$ $\mathrm{n}=8$	$\begin{gathered} \text { Anchor nails } \varnothing 4 \times 50 \\ n=8 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \varnothing 4 \times 60 \\ n=8 \end{gathered}$	Angle-bracket screw 05×40 $\mathrm{n}=8$	Angle-bracketscrew 05×50 $n=8$	Angle-bracketscrew 05×60 $\mathrm{n}=8$	Steel
Leg connection 2	$\begin{gathered} \text { Paneltwistec } \mathrm{CH} \cap 5 \times 120 \\ n=12 \end{gathered}$	Anchor nails 04×40 $\mathrm{n}=8$	$\text { Anchor nails } \varnothing 4 \times 50$	$\begin{gathered} \text { Anchor nails } \varnothing 4 \times 60 \\ n=8 \end{gathered}$	Angle-bracketscrew 05×40 $\mathrm{n}=8$	Angle-bracketscrew 05×50 $\mathrm{n}=8$	Angle-bracketscrew 05×60 $\mathrm{n}=8$	5250
Char. tensile capacity [kN]	35	12,5	14,7	15,2	17,1	18,2	19,4	37,4

The load-bearing capacities were determined based on ETA-19/0020 Characterisicic load-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density.
The minimum distances between the connectors and the edges according to EC5 must be complied with.
Please note: Verity the assumptions made. The stated values, and type and number of joining devices are based on preliminary meassurements. Projects are to be dimensioned exclusively by outhorised persons in accordance with the State Building Code.
As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

SHEAR WALL CONNECTOR

FOR THE COMPENSATION OF UNEVENNESS IN CONSTRUCTION ELEMENTS

ADVANTAGES

- Allows high shear force transmission between the wall elements
- Compensates for unevenness between building elements
- Does not protrude from the wall

INSTRUCTIONS FOR USE

To install the shear wall connector, first cut a groove in each wall at the same height. The shear wall connector is then inserted into the milling and fixed with two screws. The flatness of the connector helps compensate for slight differences in height between the walls. The screw connection also pulls both walls horizontally to the connector, thus straightening out slight unevenness here as well.

Suitable for use with:
KonstruX ST CH Ø 8,0 mm
Scope of delivery includes screws

Art. no.	Name	Dimensions [mm] ${ }^{\text {a/ }}$	Pu*
Onreverst	Sher Vall (ometor	100 19×80	Onreupes

Unevenness compensation through screws and edges

Gurotec

ASSEMBIY CONNECTOR

FOR CONNECTING TWO TIMBER CONSTRUCTION ELEMENTS IN SYSTEMS BUULDING

ADVANTAGES

- Can be used regardless of weather conditions
- Easy assembly
- Quick and easy element positioning

DESCRIPTION

The Eurotec assembly connector consists of two individual components that interlock during assembly. It serves as a preparatory element in system construction.

INSTRUCTIONS FOR USE

We recommend our Paneltwistec $\mathrm{AGCH} 6 \times 80 \mathrm{~mm}$ for the use of the assembly connector. It is flush-mounted in a groove positioned at any chosen location on the construction elements. Once the elements have been inserted, the assembly connector is hidden inside the wall. The assembly connector must have a screw inserted in every screw hole. Our assembly connector is designed purely for guidance purposes. It cannot be used to absorb forces.

Art. no.	Name	Dimensions $[\mathrm{mm}]^{0}$	PU*
800272	Assembly conector	$32,7 \times 175 \times 29,7$	50

a) Height x Length x Width
*incl. 150 screws per PU

Step 1

Note
The assembly connector is not a connector that should be exposed to large, permanent load it is only a mounting tool!

Gurotec

MAGNUS HOOK CONNECTOR

TIMBER CONNCTOR FOR MAIN-SECONDARY BEAM JOINTS

ADVANTAGES

- Easy assembly
- High level of prefabrication
- Suitable for high joints
- Visible and hidden loads
- Milling cutter and milling and assembly iig available

ECS calculation soffware for free preliminary calculation

INSTRUCTIONS FOR USE

The Magnus should always be fully unscrewed to ensure an easy and safe installation. Whether surface-mounted or recessed, the milling and mounting iig shows the connector where to fit. Sides and end grain surfaces must be flat to avoid any deformation of the connector during the assembly.

1 Insert 90° fully threaded screws and fix Magnus to the wood

3
use fixing screws to secure the joint against lifting out

4
Joint complete

Connector

Fixing screws

Gurotec

OVERVIEW OF MAGNUS HOOK CONNECTORS

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$		Fixing screws ${ }^{\text {b }}$)		Main beam		Secondary beam sufface-mounted		Secondary beam flush-mounted				characteristic load-bearing capacity FRke			
		WxHx D ${ }^{\text {a }}$		Dimension	$\mathrm{n}_{\text {per }}$connector	Dimension	nper connector	min. WMB	min. Нмв	min. WSB	min. Hsb	$\min _{W_{S B^{C}}}$	min. HsB	W_{F}	DM ${ }^{\text {d) }}$	Fl,Rk	F2,Rk	F3,Rk	F4,Rk
		[mm]		[mm]		[mm]		[mm]	[kN]	[kN]	[kN]	[kN]							
94887	Magus XS 30 30	$30 \times 30 \times 9$	20	4,0 $\times 30$	6	$4,2 \times 26$	1	40	40	40	40	40	40	30	9	1,2	1,57	1,70	1,19
94887	Magnus 50×60	$50 \times 60 \times 13$	10	$4,0 \times 60$	8	$4,2 \times 26$	2	60	80	60	80	80	80	50	13	3,73	7,25	5,00	1,92
948876	Magnus 50×80	$50 \times 80 \times 13$	10	$4,0 \times 60$	12	$4,2 \times 26$	2	60	100	60	100	80	100	50	13	3,73	14,50	5,00	2,80
94887	Magus 50×100	$50 \times 100 \times 13$	10	$4,0 \times 60$	18	$4,2 \times 26$	2	60	120	60	120	80	120	50	13	7,46	21,75	5,00	4,41
944878	Magus M70 120	$70 \times 120 \times 17$	10	$5,0 \times 80$	13	$4,8 \times 60$	2	80	140	80	140	100	140	70	17	5,49	21,34	13,00	5,17
948879	Magus M70 140	$70 \times 140 \times 17$	10	$5,0 \times 80$	16	$4,8 \times 60$	2	80	160	80	160	100	160	70	17	5,49	32,00	13,00	6,09
94488	Magnus M70 160	$70 \times 160 \times 17$	10	5,0×80	21	$4,8 \times 60$	2	80	180	80	180	100	180	70	17	10,98	37,34	13,00	8,27
94488	Magus M70 180	$70 \times 180 \times 17$	10	5,0×80	24	$4,8 \times 60$	2	80	200	80	200	100	200	70	17	10,98	42,67	13,00	9,32
94488	Magnus 1110×220	$110 \times 220 \times 19$	4	$8,0 \times 120$	13	$4,8 \times 60$	2	120	240	120	240	140	240	110	19	9,29	36,10	23,00	13,96
94888	Magnus 1110×260	$110 \times 260 \times 19$	4	$8,0 \times 120$	17	$4,8 \times 60$	2	120	280	120	280	140	280	110	19	13,93	45,13	23,00	17,98
944884	Magnus 1110×300	$110 \times 300 \times 19$	4	$8,0 \times 120$	20	$4,8 \times 60$	2	120	320	120	320	140	320	110	19	13,93	54,15	23,00	20,56
944887	Magnus 110×340	$110 \times 340 \times 19$	4	$8,0 \times 120$	22	$4,8 \times 60$	2	120	360	120	360	140	360	110	19	13,93	63,18	23,00	24,67
944888	Magnus 110×380	$110 \times 380 \times 19$	4	$8,0 \times 120$	25	$4,8 \times 60$	2	120	400	120	400	140	400	110	19	9,29	72,20	23,00	26,96
948889	Magnus 110×580	$110 \times 580 \times 19$	4	$8,0 \times 120$	38	$4,8 \times 60$	2	120	600	120	600	140	600	110	19	9,29	126,35	23,00	43,29

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams. Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typoographical and printing errors.
The characterisic values of the load-bearing capacity FFks should not be treated as equivalent to the max. possible load (the max. force). The characterisici values of the load-bearing capacity Frk should be reduced to the design values Frd in terms of the service class and the load duration class: Frd= FRk x kmod $/ \gamma \mathrm{M}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

INSTALLATION ACCESSORIES

Milling and assembly jig	Art. no.	Suitable for	PU
For Magnus hook connector	94867	Magnus XS	1
	94889	Magus 5	1
	94889	Magnus M	1
	944870	Magnus L200/260/300	1
	94903	Magnus L340/380/420	1
	949904	Magnus 460//50//40/580	1
	DESCRIP		
	- Insertio		
	- Milling		

Milling cutter
For Magnus hook connector

Art. no.	Suitable for	Shaff diameter [mm]	PU
949336	Magnus XS	6,35	1
29686	Magnus S	8	1
2966	Magnus M und L	8	1

THE FOLLOWING MUST BE OBSERVED IN THE EVENT OF FLUSH-MOUNTED INSTALLATION IN THE SECONDARY BEAM

- The beam's minimum width must be increased so that there is enough surrounding wood remaining at the side for the milling work
- The beam must be milled out at full height

THE FOLLOWING MUST BE OBSERVED IN THE EVENT OF FLUSH-MOUNTED INSTALLATION
IN THE MAIN BEAM

- The main beam's load-bearing cross-section is reduced by the connector's assembly thickness
- The beam's minimum width must be adjusted (screw length)

Eurotec

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx Da)		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	1445	n90 ${ }^{\circ}$	145 ${ }^{\circ}$	[mm]	
94877	Magnus XS 30×30	$30 \times 30 \times 9$	20	4,0×30	6	3	-	3	-	$4,2 \times 26$	1

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam sufface-mounted		Secondary beam flush-mounted				characterisicic lood-bearing (cppacity FRk ${ }^{\text {d }}$			
		WxHx ${ }^{\text {dol }}$			min. WSB	min. Hs	min. WS ${ }_{\text {b }}{ }^{\text {b }}$	min. Hsb	WM	DM ${ }^{\text {c }}$	$\mathrm{F}_{1, \mathrm{Rk}}$	F2,Rk	,Rk	F4,Rk
		[mm]		[mm]	[kN]	[kN]	[kN]	[kN]						
14874	Magus $\times 530 \mathrm{x}$	0x30x9	40	40	40	40	40	40	30	9	1,12	1,57	1,0	1,19

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation eassier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity FRk apply to the specified timber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculctions.
All values are calculated minimum values and are subject to typographical and printing errors.
The characterisicic values of the load-bearing capacity FRk should not be treated as equivalent to the max. possible load (the max. force). The charocterisicic values of the lood-bearing capacity FRk should be redveed to the design values FRd in terms of the service class and the lood duration class: FRd $=$ FRk $\mathrm{x} \mathrm{mod} / \gamma \mathrm{M}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n44 ${ }^{\circ}$	n90 ${ }^{\circ}$	145 ${ }^{\circ}$	[mm]	
94875	Magus 50×60	$50 \times 60 \times 13$	10	4,0×60	8	2	2	2	2	$4,2 \times 26$	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam surface-mounted		Secondary beam flush-mounted				characteristic lood-bearing c cpacity F Fk ${ }^{\text {d) }}$			
		WxHx ${ }^{\text {a }}$			min. WSB	min. Hsb	min. W(Sb ${ }^{\text {b }}$	min. HSB	WM	DM ${ }^{\text {c }}$	$\mathrm{F}_{1, \mathrm{lk}}$	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm]			[kN]	[kN]	[kN]	[kN]						
4875	Magus 550	$50 \times 60 \times 13$	60	80	60	80	80	80	50	13	3,73	7,25	5,00	192

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation eassier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both heams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic valves of the lood-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity Frk should not be treated as equivalent to the max. possible lood (the max. force). The characterisicic values of the load-bearing capacity FRk should be reduced to the design values Frd in terms of the service class and the load duration class: $\mathrm{Frd}=\mathrm{FRk} \mathrm{x}$ kod $/ \gamma \mathrm{M}$.
Please note: These are planning ciids. Projects must only be calculated by outhorised persons.

Eurotec

MAGNUS S 50×80

${ }^{*} 1$ connector consists of 2 individual ports
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam surface-mounted		Secondary beam flush-mounted						
		WxHx ${ }^{\text {a }}$			min. WSB	min. HSB	min. WSS ${ }^{\text {b }}$	min. HSB	WM $\mathrm{DM}^{\text {c }}$	F1,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm] [mm]	[kN]	[kN]	[kN]	[kN]							
94876	nurs 50×80	$5 \times 80 \times 13$	60	100	60	100	80	100	50	3,73	14,50	5,00	280

a) $D=$ assembly thickness

b) Incuded in delivery

c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installataion easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective heam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typoographical and printing errors.
The characterisicic values of the lood-bearing capacity Frk should not be treated as equivalent to the max. possible load (the max. force). The characterisicic values of the lood-bearing capacity FRk should be recuced to the design values FRd in terms of the service class and the load duration class: Frd= FRk x kmod $/ \gamma \mathrm{M}$.
Please note: These are planning cids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx Da)		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90	n45 ${ }^{\circ}$	[mm]	
94887	Magnus 550×100	$50 \times 100 \times 13$	10	4,0×60	18	2	6	4	6	$4,2 \times 26$	2

* 1 connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beammin. WMB min. HMB		Secondary beam sufface-mounted		Secondory beam flush-mounted				characterisisic lood bearing (capacity F. $\mathrm{Rk}^{(l)}$			
		WxHx ${ }^{\text {a }}$			min. WSB	min. Hsb	min. Ws ${ }^{\text {b }}$)	min. HSB	WM	DM ${ }^{\text {c }}$	Fl,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{k} k}$	F4,kk
		[mm]		[kN]	[kN]	[kN]	[kN]							
94887	S50x 100	$50 \times 100 \times 13$	60	120	60	120	80	120	50	13	7,46	21,5	5,00	441

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity FRk apply to the specified timber cross-sections, centred force application dong the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity Frk should not be trected as equivalent to the max. possible lood (the max. force). The characterisicic values of the load-bearing capacity FRk should be recuved to the design values Frd in terms of the service class and the load duration class: $\mathrm{Frd}=\mathrm{Frk} \mathrm{x} \mathrm{kmod}^{\operatorname{man}} / \gamma \mathrm{M}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Gurotec

Symbolic illustrations: f.l.t.r. Main beam, secondary beam surface-mounted, secondary beam flush-mounted, connector dimensions

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	145 ${ }^{\circ}$	[mm]	
944878	Magus M 70×120	$70 \times 120 \times 17$	10	$5,0 \times 80$	13	2	4	2	5	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Moin beam		Secondory beam suffac--mounted		Secondary beum flush-mounted				characteristic lood-bearing (cpacity FRk ${ }^{\text {d }}$			
		WxHx ${ }^{\text {al }}$			min. Wsb	min. HSB	min. WSs ${ }^{\text {b/ }}$	min. HSB	WM	DM ${ }^{\text {c }}$	Fl,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm]	[kN]	[kN]	[kN]	[kN]								
4487	1770×120	10x120x 17	80	140	80	140	100	140	70	17	5,49	21,34	13,0	5.17

a) $D=$ assembly thickness

b) Incuded in delivery

c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective heam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characterisic values of the load-bearing capacity FFks should not be treated as equivalent to the max. possible load (the max. force). The characterisici values of the load-bearing capacity Frk should be reduced to the design values Frd in terms of the service class and the load duration class: FRd= FRk x $\mathrm{kmod}^{\mathrm{m}} / \gamma \mathrm{M}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx Da)		Dimensions	$n_{\text {notal }}$	In the main beam		In the secondory beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	145 ${ }^{\circ}$	[mm]	
948879	Magnus M 70×140	$70 \times 140 \times 17$	10	5,0×80	16	2	6	2	6	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Moin beam		Secondory beam sufface-mounted		Secondary beam flush-mounted				characterisicic lood-bearing capacity FRK ${ }^{\text {d }}$			
		WxHx ${ }^{\text {al }}$			min. Wsb	min. HSB	min. Wsb ${ }^{\text {b }}$	min. HSB	WM	DM ${ }^{\text {c }}$	Fl,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{k} k}$	F4,Rk
		[mm]	[kN]	[kN]	[kN]	[kN]								
1879	1170 140	$\times 10 \times 17$	80	160	80	160	100	160	70	17	5,49	3200	13,00	609

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation eassier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characterisicic values of the load-bearing capacity Frk should not be trected as equivalent to the max. possible load (the max. force). The characterisicic values of the lood-bearing capacity FRk should be reduced to the design values Frd in terms of the service class and the load duration class: Frd= Frk x kmod $/ \gamma \mathrm{M}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Eurotec

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$						Fixing screws ${ }^{\text {b }}$	
		WxHx D ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	145 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
94888	Mognus M 70×160	$70 \times 160 \times 17$	10	5,0×80	21	2	8	4	7	$4,8 \times 60$	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beammin. WMB min. HMB		Secondary beam sufface-mounted		Secondary beam fush-mounted				characterisitil lood -bearing (cppcity $\mathrm{FRk}^{\text {d) }}$			
		WxHx ${ }^{0}$)			min. WSB	min. HSB	min. W(S $^{\text {b }}$)	min. HSB	WM	DM ${ }^{\text {c }}$	F1,Rk	F2,Rk	, Rk	F4,Rk
		[mm]	[kN]	[kN]	[kN]	[kN]								
4888	mus 770×160	$70 \times 160 \times 17$	80	180	80	180	100	180	70	17	10,98	37,34	13,00	8,7

a) $D=$ assembly thickness

b) Incuded in delivery

c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characcerisitic values of the lood-bearing capacity Frk should not be treated as equivalent to the max. possible load (the max. force). The characterisicic values of the lood-bearing capacity FRk should be reduced to the design values FRd in terms of the
service class and the load duration class: Frd $=$ FRk x mod $/ \gamma \mathrm{m}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Included in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam surface-mounted		Secondary beam flush-mounted				characterisicil load-bearing capacity FRk ${ }^{\text {d }}$			
		WxHx ${ }^{\text {a }}$			min. Wsb	min. HSB	min. WS ${ }^{\text {b }}{ }^{\text {b }}$	min. HSB	WM	DM ${ }^{\text {c }}$	F\|,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,R1k
		[mm]	[kN]	[kN]	[kN]	[kN]								
94881	mans 770×180	$70 \times 180 \times 17$	80	200	80	200	100	200	70	17	10,98	42,67	13,00	9,32

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installotion eassier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characteristic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA 15/0761. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculacions.
All values are calculated minimum values and are subject to typographical and printing errors.
The characterisicic values of the load-bearing capacity FRk should not be treacted as equivalent to the max. possible load (the max. force). The characterisic values of the load-bearing capacity. FRk should be reduced to the design values Frd in terms of the service class and the load duration class: Frd= FRk x mod $/ \gamma \mathrm{M}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Eurotec

Symbolic illustrations: f.l.t.r. Main beam, secondary beam surface-mounted, secondary beam flush-mounted, connector dimensions

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx D ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	145 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
94882	Magnus 1110×220	$110 \times 220 \times 19$	4	8,0x 120	13	2	4	2	5	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main heam		Secondary beam sufface-mounted		Secondary beam flush-mounted				characterisicil lood-bearing (cpacity Frk ${ }^{\text {d }}$			
		WxHx ${ }^{\text {al }}$			min. WSB	min. HSb	min. WSS ${ }^{\text {b }}$	min. HSB	WM	DM ${ }^{\text {c }}$	F1,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm]			[kN]	[kN]	[kN]	[kN]						
44882	Magus 110×220	10x 220×19	120	240	120	240	140	240	110	19	9,29	36,10	23,00	13,6

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characteristic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity FFks should not be treated as equivalent to the max. possible load (the max. force). The characterisic values of the lood-bearing capacity. FRk should be reduced to the design values Fed in terms of the
service class and the lood duration class: $\mathrm{Frd}=\mathrm{FRk} \mathrm{x} \mathrm{mod} / \gamma \mathrm{M}$.
The characterisicic load-bearing capacities for the L series were determined vsing 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning aids. Projects must only be calculated by authorised persons.

MAGNUS L 110×260

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx D ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondory beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	1445	[mm]	
948883	Magnus 1110×260	$110 \times 260 \times 19$	4	$8,0 \times 120$	17	3	5	5	6	$4,8 \times 60$	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam sufface-mounted		Secondary beam flush-mounted				characterisicil load-bearing (cpacity Frk ${ }^{\text {d/ }}$			
		WxHx ${ }^{\text {a }}$	min. WMB	min. HMB	min. WSB	min. H SB	min. Wsb ${ }^{\text {b }}$	min. HSB	WM	DM ${ }^{\text {c }}$	$\mathrm{F}_{1, \mathrm{Rk}}$	$\mathrm{F}_{2, \mathrm{Rk}}$	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm]		[mm]	[kN]	[kN]	[kN]	[kN]						
4883	mus 110×200	$110 \times 260 \times 19$	120	280	120	280	140	280	110	19	13,93	45,13	23,00	17,98

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $p \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisitic valves of the lood-bearing capacity FRk apply to the specified timber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams. Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions hat have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characcererstic values of the load-bearing capacity Frk should not be treated as equivalent to the max. possible load (the max. force). The characterisicic values of the load-bearing capacity FRk should be reduced to the design values Fre in terms of the service class and the load duration class: $\mathrm{Frd}=\mathrm{FRk} \mathrm{x} \mathrm{mod} / \gamma \mathrm{M}$.
The characterisic load-bearing capacities for the L series were determined using 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Gurotec

MAGNUSLIIOX300

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		W x H x D ${ }^{\text {a) }}$		Dimensions	$n_{\text {total }}$	In the main beam		In the secondary beam		Dimensions	
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	n
94884	Mognus L110 300	$110 \times 300 \times 19$	4	$8,0 \times 120$	20	4	6	3	7	4,8×60	2

* 1 connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Included in delivery

Art. no.	Name	Dimensions	Main beam		Secondory beam sufface-mounted		Secondary heam flush-mounted				characterisisic load-bearing capacity Frk ${ }^{\text {d }}$			
		WxHx ${ }^{\text {a }}$			min. WSB	min. Hsb	min. WS ${ }_{\text {S }}{ }^{\text {b }}$	min. Hsb	WM	$\mathrm{DM}^{\text {c }}$	$\mathrm{F}_{1, \mathrm{Rk}}$	F2,Rk	F3,Rk	F4,Rk
		[mm]	[kN]	[kN]	[kN]	[kN]								
944884	Magus 110×330	$110 \times 300 \times 19$	120	320	120	320	140	320	110	19	13,93	54,15	23,00	20,56

a) $D=$ assembly thickness
b) Incucted in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisic valves of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity FRks should not be treated as equivalent to the max. possible load (the max. force). The characteristic valves of the lood-bearing capacity Frks should be reduced to the design values Frd in terms of the
service class and the load duration class: $F R d=F R k x k_{\text {mod }} / \gamma \mathrm{M}$.
The characterisicic lood-bearing capacities for the L series were determined using 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning aids. Projects must only be calculated by authorised persons.

MAGNUSL 110×340

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
94887	Magnus L110x 340	$110 \times 340 \times 19$	4	8,0×120	22	3	7	,		4,8×60	2

* 1 connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam surface-mounted		Secondary beam flush-mounted				characterisisic lood-bearing (cppaciy $F_{\text {Rk }}{ }^{(l)}$			
		WxHx ${ }^{\text {a }}$			min. WsB	min. ${ }^{\text {H }}$	min. WS ${ }^{\text {b }}$)	min. HSB	WM	DM ${ }^{\text {(1) }}$	Fl,kk	F2,Rk	$\mathrm{F}_{3,1 \mathrm{kl}}$	F4,Rk
		[mm]		[kN]	[kN]	[kN]	[kN]							
14887	Magus 110	10×300	120	360	120	360	140	360	10	19	13,93	63,18	23,0	24,67

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both heams softwood with a gross density of $p \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity Fpk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity Frk should not be treated as equivalent to the max. possible load (the max. force). The characterisicic values of the load-bearing capacity FRk should be reduced to the design values Frd in terms of the
service class and the load duration class: $\mathrm{Frd}=\mathrm{Frk} \mathrm{x}$ mod $/ \gamma \mathrm{M}$.
The characteristic load-bearing capacities for the L series were determined using 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning oids. Projects must only be calculcted by outhorised persons.

Gurotec

MAGNUSLIIOX380

Symbolic illustrations: f.l.t.r. Main beam, secondary beam surface-mounted, secondary beam flush-mounted, connector dimensions

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		Wx $\mathrm{Hx}^{\text {da) }}$		Dimensions	$n_{\text {total }}$	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
94888	Magnus L110x 380	$110 \times 380 \times 19$	4	8,0× 120	25	4	8	2	11	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam sufface-movited		Secondary beam flush-mounted				characterisitil lood-bearing (cppaciy F Rk ${ }^{\text {d }}$)			
		WxHx ${ }^{0}$)			min. WSB	min. Hs	min. WS ${ }_{\text {b }}{ }^{\text {b }}$	min. H SB	WM	DM ${ }^{\text {c }}$	Fl,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm]		[kN]	[kN]	[kN]	[kN]							
4488	$10 x$	$10 \times 380 \times 19$	120	400	120	400	140	400	110	19	9,29	12,20	23,00	26,66

a) $D=$ assembly thickness
b) Included in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisic valves of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity FRks should not be treated as equivalent to the max. possible load (the max. force). The characteristic valves of the lood-bearing capacity Frks should be reduced to the design values Frd in terms of the
service class and the load duration class: $F R d=F R k x k_{\text {mod }} / \gamma \mathrm{M}$.
The characterisicic lood-bearing capacities for the L series were determined using 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$	
		W x $\mathrm{x} \times \mathrm{D}^{\text {a) }}$		Dimensions	$n_{\text {notal }}$	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	1445	[mm]	
948889	Magnus 1110×580	110 $\times 580 \times 19$	4	$8,0 \times 120$	38	4	14	2	18	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Included in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam surface-mounted		Secondary beam flush-mounted				characteristic load-bearing (apacity Frkd)			
		WxHx $\mathrm{D}^{\text {a }}$	min. WMB	min. НMB	min. WSB	min. HsB	min. Wsb ${ }^{\text {b }}$)	min. HSB	WM	DM ${ }^{(1)}$	Fl,Rk	F2,Rk	F3,Rk	F4,Rk
		[mm]	[kN]	[kN]	[kN]	kN]								
948889	Magus 1110×580	$110 \times 580 \times 19$	120	600	120	600	140	600	110	19	9,29	126,35	23,00	43,29

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, itis advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characteristic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions hat have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characterisicic values of the load-hearing capacity Frk should not be treated as equivalent to the max. possible lood (the max. force). The characterisicic values of the lood-bearing capacity FRk should be reduced to the design values Frd in terms of the service class and the load duration class: $\operatorname{Frd}=$ Frk $\times \operatorname{kmod} / \gamma \mathrm{M}$.
The characteristic load-bearing capacities for the L series were determined using 8×120 VG screws. Higher capacties can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning ciids. Projects must only be calculated by outhorised persons.

Eurotec

EuroTec calculation service

Magnus Hook Connector according to ETA-15/0761

by phone 02331 6245-444• by fax 02331 6245-200 • by e-mail technik@eurotec.team

Please contact our technical department or use the free calculation services in the service section of our website.
Contact

Trader:

Contact Person: \qquad
email: \qquad

Project: \qquad

Project details

Main Beam
Width:
Height: \qquad mm

Strength class: (e.g. C24, G124h etc.)

Secondary Beam

Width:	\square
Height:	mm
Strength class:	
(e.g. C24, G124h etc.)	mm

Loads (Characteristic values)

Load duration classPermanentLong
\square MediumShort

Installation

$\square \quad$ Surface assembly
$\square \quad$ Embedded in secondary beam
$\square \quad$ Embedded in main beam

Contractor:

Contact Person: \qquad

Phone:
email:
\qquad

Gurotec

T-PROFILE

FOR HIDDEN ALUMINUM CONNECTIONS

ADVANTAGES

- Hole pattern specially for Angle-bracket screw $\varnothing 5,0 \times 50 \mathrm{~mm}$
- Ideal for the timber-concrete connection with the Rock concrete screw $\varnothing 7,5$
- Creates a hidden connection
- No need of predrilling in combination with the EST dowel bar

DESCRIPTION

The self-drilling EST-Dowel bar $\varnothing 7,5$ can be connected to the T-profile without predrilling. The T-profile has a hole pattern for the Angle-bracket screw 5,0 $\times 5,0 \mathrm{~mm}$. It can also be used together with the Rock concrete screw $\varnothing 7,5$ for the timber-concrete connection. Can be used in service classes 1 and 2 according to DIN EN 1995.

Suitable for use with:
KonstruX (p. 80), Angle-bracket screw (p. 108)
Panelwistec (p. 110), Rock concrete screw (p. 76)
EST dowel bar (p.70), Dowel bar (p.71)

Art. no.	Name	Dimensions [mm] ${ }^{\text {a/ }}$	Material	Material thickness [mm]	PU
97652	T-profile	$115 \times 2000 \times 80$	Aluninum	6	1
a) Height x Length x Width					

[^0]

No need of predrilling with the EST dowel bar

Hole pattern with the Rock concrete screw

Gurotec

EST DOWEL BAR

DOUBLE-THREADED SCREW WITH CYLINDER HEAD

Eurotec's self-drilling EST dowel bar is a double-threaded screw with an innovative arrow drill and a specifically developed chip-removing groove. Ideally suited for hidden connections in combination with our T-profile. The double-threaded screw has a cylinder head with TX drive. The special geometry of the arrow drill ensures a lower splitting effect when screwing in. The chip-removing groove ensures optimised screwing-in behaviour.

EST dowel bar | Suitable |
| :---: |
| for |
| T-profile |

ADVANTAGES / PROPERTIES

- Corrosion resistance
- Can be used in service classes 1 and 2 according to DIN EN 1991

Good resistance to mechanical stresses
No pilot-drilling necessary
With innovative arrow drill
No hammering of the screws thanks to TX-drive
Optimum chip-removing groove in the thread

- Suitable for timber and aluminum

Art. no.	Dimensions [mm]	Thread length [mm]	Drive	PU
80304	7,5 $\times 73$	27/0	TX40 -	50
800291	7,5993	27/8,5	TX40	50
800305	7,5x113	36/12,5	TX40 -	50
800306	7,5×133	36/12,5	TX40 -	50
800307	7,5×153	36/12,5	TX40	50
80027	7,5x 173	36/12,5	TX40	50
800288	7,5x 193	36/12,5	TX40	50
80028	7,5×213	36/12,5	Tx40 -	50
80020	7,5×233	36/12,5	TX40 -	50

TECHNICAL DRAWING

APPILCATION COMBINATION EST DOWEL BAR AND T.PROFILE

DOWEL BAR

The rod dowel is a cylindrical bolt that has a phase at both ends for easier insertion. The rod dowel is suitable for both timber-timber joints and timber-steel joints. It is ideal for combination with our T-profile. The rod dowel is available in different diameters and lengths for an extremely wide range of applications. Please note the product table for this purpose.

APPLICATION COMBINATION DOWEL BAR AND T-PROFILE

Gurotec

HIDDEN GROUND ANCHOR

ADVANTAGES

- After installation of the floor, the hidden ground anchor is no longer visible - Dowel bar can easily be covered with thin wooden plates
- Easy insertion of the dowels, as the ground anchor is easy to drill through

INSTRUCTIONS FOR USE

The later fastening point for the hidden ground anchor is prefabricated in the factory. The hidden ground anchor is screwed onto the wooden floor at the appropriate place. Then the wall can be placed over it. Through the groove in the wall, the hidden ground anchor can still be seen exactly as far as necessary. In the assembled state, the holes for the Dowel bar are drilled to ensure troublefree assembly. After the installation of the floor covering, the hidden ground anchor is no longer visible.

Suitable for use with:
KonstruX (S. 80), Dowel bar (p. 71)
SonoTec Angular Decoupler (p. 156)

6 dowel bars are required for fastening

One of our new products is the hidden ground anchor. As the name suggests, this connector is no longer visible after the floor covering has been installed, because it is fully recessed into the wall.

Gurotec

ROCK CONCRETE SCREW

FOR FASTENING TO CONCRETE WTHOUT PLUGS

ADVANTAGES

- No spreading effect due to small center and edge distances
- Immediately loadable - therefore no waiting times
- Small borehole depths and small drill hole diameters
- Can be used for components that are constantly exposed to weathering in outdoor areas

PROPERTIES

- Highest power transmission
- High-strength screw steel
- Extremely complex annealing process
- Special thread

INSTRUCTIONS FOR USE

To insert the screw, the core hole is drilled first. The drill hole has to be cleaned, the chips have to be removed and finally the attachment part has to be fixed with the screw in the drill hole. The Rock concrete screw is developed for use in wood, concrete and stone.

Rock concrete screw	国: (E)	Art. no.	Dimensions [mm]	Head	PU
Hexagonal with flange, galvanised steel		110227*	7,5440	SW13	100
		110228*	7,5450	SW13	100
		110229	7,5×60	SW13	100
		110230	7,5x80	SW13	100
		110231	7,5x 100	SW13	100
		110233*	10,5 50	SW15	100
		110233*	10,5 60	SW15	100
		110234	$10,5 \times 80$	SW15	100
		110235	10,5 $\times 100$	SW15	100
		110236	10,5 $\times 120$	SW15	100
		11023	10,5 140	SW15	100
		110238	10,5 $\times 160$	SW15	100
		*Scews			

Rock concrete screw	通: (E	Art. no.	Dimensions [mm]	Head	PU
Hexagonal with flange, special coated		110253	$16,5 \times 115$	SW18	25
		110254	$16,5 \times 135$	SW18	25
$\triangle-$		110255	$16,5 \times 160$	SW18	25

Rock concrete screw	Art. no.	Dimensions [mm]	Head	PU
Hexagonal, galvanised steel	11033**	7,5440	SW13	100
	110339*	7,5,50	SW13	100
	110340	7,5660	SW13	100
	110341	7,5880	SW13	100
	11034*	10,5 $\times 60$	SW15	100
-	110343	10,5 88	SW15	100
	110344	$10,5 \times 100$	SW15	100
	110345	$10,5 \times 120$	SW15	100
	110346	10,5 $\times 140$	SW15	100
	11034	$10,5 \times 160$	SW15	100
	110336*	12,5 $\times 60$	SW17	100
	110337	$12,5 \times 80$	SW17	100
	110327	$12,5 \times 100$	SW17	100
	110328	$12,5 \times 120$	SW17	100
	110329	$12,5 \times 140$	Sw17	100
	110330	$12,5 \times 160$	SW17	50
	110331	$12,5 \times 180$	SW17	50
	110332	$12,5 \times 200$	SW17	50
	110333	$12,5 \times 240$	SW17	50
	110334	$12,5 \times 280$	Sw17	50
	110335	$12,5 \times 320$	SW17	50
	*Scews n			

Rock concrete screw	\% C	Art. no.	Dimensions [mm]	Drive	PU
Countersunk head, galvanised steel		110348*	7,5440	TX40	100
		110349	7,5,60	TX40 -	100
		110350	7,5, 80	TX40	100
	\%em	110351	1,5x 100	TX40	100
		110352	1,5 120	TX40	100
		110353	7,5x 140	TX40	100
		110354	7,5 160	TX40	100
		*Screws no			

Eurotec

TECHNICAL INFORMATION ROCK CONCRETE SCREW

Rock, hexagonal with flange

$\begin{aligned} & 7,5 \times 60 \\ & 1,5 \times 80 \end{aligned}$	SW13	16,5	100	5 25	55	6,0	3,0	11,0	19,0	6	70	9	40
10,5x80				5									
$10,5 \times 100$				25									
10,5 120	SW15	17,5	160	45	75	6,0	3,0	22,0	51,0	9	90	12	55
10,5 140				65									
$10,5 \times 160$				85									
$16,5 \times 115$				5									
$16,5 \times 135$	Sw18	30,5	175	25	110	40,0	30,0	57,9	235,9	14	130	18	100
$16,5 \times 160$				50									
Rock, hexagonal													
$7,5 \times 60$	SW13	n/a	100	5	55	6,0	3,0	11,0	19,0	6	70	9	40
$1,5 \times 80$ $10,5 \times 80$				25 5									
$10,5 \times 100$				25									
$10,5 \times 120$	SW15	n/a	160	45	75	6,0	3,0	22,0	51,0	9	90	12	55
10,5 $\times 140$				65									
10,5 $\times 160$				85									
12,5x 80	SW17	n/a	200	5	75	25,0	12,0	35,0	98,0	10	90	14	65
$12,5 \times 100$	SW17	n/a	200	5	95	25,0	12,0	35,0	98,0	10	110	14	65
$12,5 \times 120$				25									
$12,5 \times 140$				45									
$12,5 \times 160$				65									
$12,5 \times 180$				85									
$12,5 \times 200$				105									
$12,5 \times 240$				145									
$12,5 \times 280$				185									
12,5 320				225									

Rock, countersunk head

$7,5 \times 60$				5
$7,5 \times 80$				25
$7,5 \times 100$	14,0	n / a	100	45
$7,5 \times 120$				65
$7,5 \times 140$				85
$7,5 \times 160$				105

Setting tool: Electrical tangential impact wrench, max. power rating $T_{\text {max }}$ according to manufacturer's data, recommended $\mathrm{T}_{\text {max }}: 250 \mathrm{Nm}$ for Rock $7,5 \times \mathrm{L} ; 450 \mathrm{Nm}$ for Rock $10,5 \times \mathrm{L}$. and $12,5 \mathrm{LL}$. and $16,5 \mathrm{~L}$.
Note: A higher max. torque of the setting tool can lead to destruction of the drilling hole or damage to the screw.
Assembly with torque wrench: Recommended installation torque Tinst: 20 Nm for Rock $7,5 \mathrm{xL} ; 40 \mathrm{Nm}$ for Rock $10,5 \times \mathrm{L} .60 \mathrm{Nm}$ for Rock $12,5 \times \mathrm{L}$. and 120 Nm for $16,5 \mathrm{LL}$.
a) The calculation for a joint is to be performed according to EAAG-001 Annex C. b) Partial safety factors: $\gamma \mathrm{Ms}, \nu=1,5 ; \gamma M s, M=1,5$.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

EuroTec calculation service

Rock concrete screw according to ETA-15/0886

by phone 02331 6245-444 • by fax 02331 6245-200 • by e-mail technik@eurotec.team

Please contact our technical department or use the free calculation services in the service section of our website.

Contact

Trader:

Contact Person:

\qquad
e-mail: \qquad

Project: \qquad

Contractor:

Contact Person: \qquad
Phone: \qquad
e-mail: \qquad

A detailed sketch of the joint must be enclosed with the inquiry, stating the following details:

- Geometry of concrete and attachment
- Edge and centre distances C and S
- Position of attachment relative to concrete component
- Position (and angle, where applicable) of force application point on the attachment

Screw selection

$\square \quad \varnothing 7,5 \mathrm{~mm}$ countersunk head
$\square \quad \varnothing 7,5 \mathrm{~mm}$ hex head, flange \square $\varnothing 7,5 \mathrm{~mm}$ hex head
$\varnothing 10,5 \mathrm{~mm}$ hex head
$\varnothing 10,5 \mathrm{~mm}$ hex head, flange
$\varnothing 12,5$ mm hex, flange
$\varnothing 12,5$ hex head, flange

Gurotec

KONSTRUX FULLY THREADED SCREW

THE HIGH-PERFORMANCE SOLUTION FOR NEW CONSTRUCTION AND REFURBISHMENT

ADVANTAGES

- High extraction resistance
- Strong joints
- Maximisation of the load-bearing capacity
- A time- and cost-saving alternative
- Hidden connections
- No pre-drilling required according to approval / ETA (recommended from screw lengths $\geq 245 \mathrm{~mm}$)

PROPERTIES

- Maximum load transmission
- High fire-resistance
- No thermal bridges

INSTRUCTIONS FOR USE

KonstruX fully threaded screws maximize the load-bearing capacity of a connection due to the high thread extraction resistance in both components. When using partially threaded screws, the significantly lower head pull-through resistance in the attachment part limits the load-bearing capacity of the connection. KonstruX fully threaded screwn provide a cost-saving alternative to traditional connectors or timber connectors such as joist shoes and joist girders.

KonstruX in order to connect a wall with a sill plate.

Gurotec

Connection of a wall and a support for the ceiling joist.

Gurotec

Connection of ceiling elements through internal push board.

Connection of ceiling elements through upper push board.

Gurotec

Mitred roof panels, screw connection with ridge purlin.

Mitred roof panels, diagonal screw connection.

Roof panels on butt joint, diagonal screw connection.

Eurotec

STARCASE CONSTRUCTION WITH CLT AND KONSTRUX

Attach the tier end frontal to the tier support.

Attach steps on top of the tier support.

Gurotec

KonstruX ST fully threaded screw \% C \%	Art. no.	Dimensions [mm]	Drive	PU
Cylinder head, galvanised	908808	6,5 $\times 80$	TX30	100
	908809	6,5x 100	TX30-	100
	908810	$6,5 \times 120$	TX30 -	100
	904811	6,5×140	TX30 -	100
	908812	6,5×160	TX30 -	100
BENEFITS OF DRILL POINT	908813	6,5x 195	TX30 -	100
Reduced screwing torque	908825	$8,0 \times 155$	TX40	50
High extraction resistance	908826	$8,0 \times 195$	TX40	50
,	90882	8,0x 220	TX40	50
,	908828	8,0x 245	TX40 -	50
	908834	8,0 270	TX40 -	50
	908829	$8,0 \times 295$	TX40	50
,	908830	8,0x 330	TX40	50
	908831	$8,0 \times 375$	TX40	50
)	908832	$8,0 \times 400$	TX40	50
	948804	$8,0 \times 430$	TX40 -	50
	948805	$8,0 \times 480$	TX40	50
	948806	8,0x530	TX40 -	50
	94880	8,0x580	TX40	50
	908815	$10,0 \times 300$	TX50 -	25
	908816	$10,0 \times 330$	TX50 -	25
	908817	10,0 $\times 360$	TX50 -	25
	908818	10,0 $\times 400$	TX50 -	25
	908819	$10,0 \times 450$	TX50	25
	908820	$10,0 \times 500$	TX50 -	25
	908821	10,0 $\times 550$	TX50 -	25
	908822	$10,0 \times 600$	TX50 -	25

BENEFITS OF DRILL POINT

- Reduced screwing torque
- High extraction resistance

Art. no.	Dimensions [mm]	Drive	PU
908857	6,5x80	TX30 -	100
908858	6,5×100	TX30 -	100
908859	6,5×120	TX30	100
908860	6,5x 140	TX30	100
90779	8,0×95	TX40 -	50
90791	$8,0 \times 125$	TX40	50
90792	$8,0 \times 155$	Tx40 -	50
90793	$8,0 \times 195$	TX40 -	50
90779	8,0x 220	TX40 -	50
907795	8,0x 245	TX40 -	50
90776	$8,0 \times 270$	TX40 -	50
90779	$8,0 \times 295$	TX40 -	50
90779	8,0x330	TX40 -	50
907799	8,0x375	TX40 -	50
90880	$8,0 \times 400$	TX40 -	50
908801	$8,0 \times 430$	TX40 -	50
908802	$8,0 \times 480$	TX40 -	50
908803	8,0x 545	TX40 -	50
90470	$10,0 \times 125$	TX50 -	25
90471	$10,0 \times 155$	TX50 -	25
90472	$10,0 \times 195$	TX50 -	25
90473	$10,0 \times 220$	TX50	25
90774	10,0 $\times 245$	TX50	25
90775	$10,0 \times 270$	TX50	25
904776	$10,0 \times 300$	TX50	25
90477	10,0×330	TX50 -	25
90478	10,0 $\times 360$	TX50	25
90479	$10,0 \times 400$	TX50 -	25
90778	$10,0 \times 450$	TX50 -	25
904781	$10,0 \times 500$	TX50 -	25
90778	10,0 $\times 550$	TX50 -	25
90478	$10,0 \times 600$	TX50	25

KonstruX threaded screw 滑: (E	Art. no.	Dimensions [mm]	Drive	PU
Countersunk head, galvanised	905737	11,3x300	TX50 -	20
	905738	11,3x340	TX50 -	20
\cdots 为	905739	11,3x 380	TX50 -	20
	905740	11,3x420	TX50 -	20
ADVANTAGES SCREW TIP	905741	$11,3 \times 460$	TX50 -	20
	90572	11,3x500	TX50 -	20
Faster and easier screwing	90574	11,3x540	TX50	20
Reduced spliting effect	90574	11,3x580	TX50 -	20
	905745	11,3x620	TX50 -	20
	905746	11,3x660	TX50 -	20
	90574	11,3x700	TX50 -	20
	905748	11,3x750	TX50	20
	905749	11,3x800	TX50 -	20
	904750	11,3x900	TK50 -	20
	90475	$11,3 \times 1000$	TX50 -	20

KonstruX threaded screw ${ }_{\text {a }}$	Art. no.	Dimensions [mm]	Drive	PU
Countersunk head, Stainless steel A4	905750	10,0 160	TX50	25
	905751	$10,0 \times 200$	TX50	25
	905752	10,0 $\times 220$	TX50 -	25
	905753	10,0 $\times 240$	TX50 -	25
	905754	10,0 $\times 260$	TX50 -	25
	905755	$10,0 \times 280$	TX50 -	25
	905756	10,0x 300	TX50 -	25
	905757	$10,0 \times 350$	TX50 -	25
	905758	$10,0 \times 400$	TX50	25

Eurotec

THE FAST AND SECURE TIMBERJOINT SYSTEM KONSTRUX CYLINDER-HEAD/COUNTERSUNK-HEAD SCREWS

Application examples	Cylinder head			Countersunk head			
	$\begin{aligned} & 06,5 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & 08,0 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & 010,0 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & 06,5 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & 08,0 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & 010,0 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} 011,3 \\ {[\mathrm{~mm}]} \end{gathered}$
	X	X	X	X	X	X	\mathbf{X}
Timber-timber under tension ot 45° Timber-timber under tension at 45°	\mathbf{X}	X	\mathbf{X}	\mathbf{X}	X	X	\mathbf{X}
Steel-timber tensile loading Steel-timber shearing a	-	-	-	X	X	X	\mathbf{X}
Steel-timber under tension ot 45° Steel-timber under tension at 45°	-	-	-	\mathbf{X}	X	X	\mathbf{X}
Main-secondary beam connection Post-crosspiece connection	X	\mathbf{X}	X	X	X	\mathbf{X}	-
	X	X	X	X	X	\mathbf{X}	\mathbf{X}
Transverse-shear reinforcement at notch Transverse-shear reinforcement at hole	\mathbf{X}	X	\mathbf{X}	X	X	X	X
	-	X	\mathbf{X}	-	X	X	X
Transverse-shear reinforcement of building trusses	-	-	X	-	-	X	X

Eurotec

KONSTRUX FULLY THREADED SCREW

TECHNICAL INFORMATION

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 6,5 TO 10,0 MM: TIMBER-TIMBER JOINTS

Calculation according to $\mathrm{EA}-11 / 0024$. Wood density $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic valves of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisici values of the lood-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and class of the load duration: $R_{d}=R_{k} \cdot \mathrm{kmod}_{\mathrm{m}} / \gamma \mathrm{\gamma}$. The dimensioning values of the lood-bearing capacity R_{d} should be contrasted with the dimensioning values of the loads ($\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed}$).
Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}^{2}=0,9 . \gamma \mathrm{m}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT

6,5 TO 10,0 MM: TIMBER-TIMBER JOINTS

Characterisic value of the joint's lood-bearing capacity Rax,k or Rk acc. to EAA-11/0024

dl xL [mm$]$	A[mm]	$B[\mathrm{~mm}]$	$\mathrm{Raxa}^{(\mathrm{K}}{ }^{\mathrm{a}} \cdot[\mathrm{kN}]$	$\mathrm{Rk}^{(0)} \cdot[\mathrm{kN}]$	${\mathrm{Rax}, \mathrm{k}^{\text {a) }} \text {-[kN] }}^{\text {a }}$	$\mathrm{Rk}^{(0)} \cdot[\mathrm{kN}]$	${\mathrm{Rax}, \mathrm{K}^{\text {a }}}^{\text {a }} \cdot[\mathrm{kN}]$	$\mathrm{Rk}^{\text {a) }} \cdot[[\mathrm{kN}]$	${\mathrm{Rax}, \mathrm{k}^{\text {a) }} \text { - [kN] }}^{\text {a }}$	$\mathrm{Rk}^{\text {a) }}$-[kN]
			$\alpha=45^{\circ}$		$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha B=45^{\circ} \end{aligned}$		$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha B=90^{\circ} \end{aligned}$		$\begin{aligned} & \alpha A=45^{\circ} \\ & \alpha B=90^{\circ} \end{aligned}$	
6,5 5160	60	80	5,95	4,21	5,95	4,21	5,95	4,21	5,95	4,21
6,5x 195	80	80	6,48	4,58	6,48	4,58	6,48	4,58	6,48	4,58
8, $\times 155$	60	60	6,65	4,70	6,65	4,70	6,65	4,70	6,65	4,70
8, $\times 195$	80	80	7,76	5,49	7,76	5,49	7,76	5,49	7,76	5,49
8,0 220	80	100	10,13	7,17	10,13	7,17	10,13	7,17	10,13	7,17
8,0×245	100	100	9,82	6,95	9,82	6,95	9,82	6,95	9,82	6,95
8,0×295	120	100	11,88	8,40	11,88	8,40	11,88	8,40	11,88	8,40
8,0×330	120	140	15,20	10,75	15,20	10,75	15,20	10,75	15,20	10,75
8, $\times 375$	140	140	16,79	11,87	16,79	11,87	16,79	11,87	16,79	11,87
8,0x 400	160	140	16,48	11,65	16,48	11,65	16,48	11,65	16,48	11,65
$8,0 \times 430$	160	160	19,32	13,66	19,32	13,66	19,32	13,66	19,32	13,66
$8,0 \times 480$	180	180	21,38	15,12	21,38	15,12	21,38	15,12	21,38	15,12
10,0x 300	120	120	15,03	10,63	15,03	10,63	15,03	10,63	15,03	10,63
$10,0 \times 330$	120	140	18,49	13,07	18,49	13,07	18,49	13,07	18,49	13,07
$10,0 \times 360$	140	140	18,69	13,21	18,69	13,21	18,69	13,21	18,69	13,21
$10,0 \times 400$	160	140	20,04	14,17	20,04	14,17	20,04	14,17	20,04	14,17
$10,0 \times 450$	160	180	25,81	18,25	25,81	18,25	25,81	18,25	25,81	18,25
10,0 $\times 500$	180	200	28,31	20,02	28,31	20,02	28,31	20,02	28,31	20,02
$10,0 \times 550$	200	200	30,82	21,79	30,82	21,79	30,82	21,79	30,82	21,79
$10,0 \times 600$	220	220	33,00	23,33	33,00	23,33	33,00	23,33	33,00	23,33

Calculation according to $\mathrm{EA}-11 / 0024$. Wood density $\rho_{\mathrm{k}}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characteristic values of the load-bearing capacity Rks should be reduced to dimensioning values

Rd with regard to the usage class and class of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma M$. The dimensioning values of the load-bearing capacity $R d s$ should be contrasted with the dimensioning values of the loads (Rd $\left.\geq E_{d}\right)$.
Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $Q_{k}=3,00 \mathrm{kN}$. $\mathrm{kmod}^{2}=0,9 \cdot \gamma_{\mathrm{M}}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{E}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{Rk}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod} \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised
persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Eurotec

KONSTRUX ST WITH COUNTERSUNK HEAD AND DRILL POINT

6,5 TO 10,0 MM: TIMBER-TIMBER JOINTS

Dimensions			Extraction resistance	Shearing			
			Charocterisicic value of the joint's loadbearing capacity Rax, , acc. to ETA-11/0024	$\begin{aligned} & \xrightarrow{V\left(\alpha=0^{\circ}\right)} \\ & V_{\left(\alpha=0^{\circ}\right)} \\ & \stackrel{V\left(\alpha=90^{\circ}\right)}{ } \\ & V\left(\alpha=90^{\circ}\right) \end{aligned}$		$\mathrm{V}\left(\mathrm{a}=0^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$ $\mathrm{V}\left(\mathrm{a}=90^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ of the join's cr. to ETA-11/002	B
dl xL [mm]	A [mm]	B [mm]		$\mathrm{Rk}^{\text {a) }} \cdot[\mathrm{kNW}]$	$\mathrm{R}^{\text {a) }}$ - [kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{Rk}^{\text {a) }}$ - [kN]
				$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\begin{aligned} \alpha_{A} & =0^{\circ} \\ \alpha, & =90^{\circ} \end{aligned}$	$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha B=0^{\circ} \end{aligned}$
6,5 $\times 120$	60	80	4,75	3,93	3,47	3,93	3,47
$6,5 \times 140$	80	80	4,75	3,93	3,47	3,47	3,93
8,0×95	40	60	3,08	4,61	3,57	4,61	3,57
$8,0 \times 125$	60	80	4,61	5,05	4,37	5,05	4,37
$8,0 \times 155$	80	80	7,11	5,67	4,99	4,99	5,67
8,0x 195	100	100	9,01	6,15	5,46	5,46	6,15
8,0x 220	120	120	9,48	6,27	5,58	5,58	6,27
8,0x 245	120	140	11,38	6,74	6,06	6,74	6,06
8, $\times 270$	140	140	12,33	6,98	6,29	6,29	6,98
$8,0 \times 295$	140	160	13,28	7,21	6,42	7,21	6,42
8,0 $\times 330$	160	180	15,17	7,69	6,42	1,69	6,42
8,0x 375	180	200	17,07	7,79	6,42	7,79	6,42
$8,0 \times 400$	200	220	18,97	7,79	6,42	7,79	6,42
8,0x 430	220	220	19,92	1,79	6,42	6,42	1,79
$8,0 \times 480$	240	260	22,76	7,79	6,42	7,79	6,42
$10,0 \times 125$	60	80	6,92	7,18	6,18	7,18	6,18
$10,0 \times 155$	80	80	8,65	1,61	6,61	6,61	1,61
10,0 195	100	100	10,96	8,19	7,19	7,19	8,19
10,0 $\times 220$	120	120	11,53	8,33	1,33	1,33	8,33
10,0 245	120	140	13,84	8,91	1,91	8,91	1,91
10,0 270	140	140	14,99	9,20	8,20	8,20	9,20
$10,0 \times 300$	160	160	16,15	9,48	8,48	8,48	9,48
$10,0 \times 330$	160	180	18,46	10,06	8,90	10,06	8,90
$10,0 \times 360$	180	200	20,76	10,64	8,90	10,64	8,90
10,0x 400	200	220	23,07	10,89	8,90	10,89	8,90
10,0x 450	220	240	25,38	10,89	8,90	10,89	8,90
10,0x 500	240	280	27,68	10,89	8,90	10,89	8,90
$10,0 \times 550$	260	300	29,99	10,89	8,90	10,89	8,90
$10,0 \times 600$	300	320	33,00	10,89	8,90	10,89	8,90

All values are calculcted minimum values and are subject to typographical and pirining errors.

Example:

Plecse note: These cre planning aids. Projects must only be calculcted by authoised persons.

KONSTRUX ST WITH COUNTERSUNK HEAD AND DRILL POINT 8,0 AND 10,0 MM: TIMBER-TMBER JOINTS

Dimensions
Tension connection

Characterisicic value of the joint's loadbearing capacity Rax,k bzw. Rk acc. to EAA-11/0024

dl xL [mm]	A [mm]	$B[\mathrm{~mm}]$	$\mathrm{Rax}_{\text {a }}\left(\mathrm{k}{ }^{\text {a) }}\right.$. [kN]	$\mathrm{Rk}^{(0)}$ - [kN]	${\mathrm{Rax}, 1^{\text {a }}}^{\text {a) }}$ [kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$R_{a x, 1}{ }^{\text {a) }}$-[kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{R}_{\mathrm{ax}, \mathrm{k}} \mathrm{l}^{\text {a) }}$ [[kN]	Rk ${ }^{\text {a) }}$-[kN]
			$\alpha=45^{\circ}$		$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha B=45^{\circ} \end{aligned}$		$\begin{aligned} & \alpha_{A}=90^{\circ} \\ & \alpha_{B}=90^{\circ} \end{aligned}$		$\begin{aligned} & \alpha A=45^{\circ} \\ & \alpha, B=90^{\circ} \end{aligned}$	
8, $\times 155$	60	60	6,65	4,70	6,65	4,70	6,65	4,70	6,65	4,70
8, $\times 195$	80	80	7,76	5,49	7,76	5,49	7,76	5,49	7,76	5,49
8, $\times 220$	80	100	10,13	7,17	10,13	7,17	10,13	7,17	10,13	7,17
8, $\times 245$	100	100	9,82	6,95	9,82	6,95	9,82	6,95	9,82	6,95
8, $\times 270$	100	120	12,19	8,62	12,19	8,62	12,19	8,62	12,19	8,62
8, $\times 295$	120	100	11,88	8,40	11,88	8,40	11,88	8,40	11,88	8,40
8, $\times 330$	120	140	15,20	10,75	15,20	10,75	15,20	10,75	15,20	10,75
8, $\times 375$	140	140	16,79	11,87	16,79	11,87	16,79	11,87	16,79	11,87
8,0 400	160	140	16,48	11,65	16,48	11,65	16,48	11,65	16,48	11,65
8, x 430	160	160	19,32	13,66	19,32	13,66	19,32	13,66	19,32	13,66
8,0 480	180	180	21,38	15,12	21,38	15,12	21,38	15,12	21,38	15,12
10,0x 220	80	100	12,33	8,72	12,33	8,72	12,33	8,72	12,33	8,72
$10,0 \times 245$	100	100	11,95	8,45	11,95	8,45	11,95	8,45	11,95	8,45
$10,0 \times 270$	100	120	14,83	10,49	14,83	10,49	14,83	10,49	14,83	10,49
10,0 300	120	120	15,03	10,63	15,03	10,63	15,03	10,63	15,03	10,63
$10,0 \times 330$	120	140	18,49	13,07	18,49	13,07	18,49	13,07	18,49	13,07
10,0 $\times 360$	140	140	18,69	13,21	18,69	13,21	18,69	13,21	18,69	13,21
$10,0 \times 400$	160	140	20,04	14,17	20,04	14,17	20,04	14,17	20,04	14,17
$10,0 \times 450$	160	180	25,81	18,25	25,81	18,25	25,81	18,25	25,81	18,25
10,0x500	180	200	28,31	20,02	28,31	20,02	28,31	20,02	28,31	20,02
10,0 $\times 550$	200	200	30,82	21,79	30,82	21,79	30,82	21,79	30,82	21,79
$10,0 \times 600$	220	220	33,00	23,33	33,00	23,33	33,00	23,33	33,00	23,33

Calculation according to EAA- $11 / 0024$. Wood density $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characterisicic values of the lood-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and dass of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma \mathrm{M}$. The dimensioning values of the lood-bearing capacity Rd_{d} should be contrasted with the dimensioning values of the loads ($\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed}$).
Example:
Characterisic value for constant lood (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable lood (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}^{2}=0,9 \cdot \gamma_{\mathrm{M}}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{E} d=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The lood-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed} . \rightarrow \min \mathrm{Rk}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characterisicic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\operatorname{mol}} \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

Gurotec

KONSTRUX WITH COUNTERSUNK HEAD AND DRILL POINT OR AG TIP 11,3 MM: TIMBER-TIMBER CONNECTION

Dimensions			Extraction resistance	Shearing			
			Characterisicic value of the joint's loadbearing capacity Rax,k acc. to ETA-11/0024	$\xrightarrow[V\left(\alpha=0^{\circ}\right)]{V\left(\alpha=0^{\circ}\right)}$ $V\left(\alpha=90^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$	A Charocter loadbearing ca	$V\left(\alpha=90^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$ $V_{\left(\alpha=0^{\circ}\right)}$ of the join's c. to ETA-11/0024	
dl x L [mm $]$	A [mm]	$B[\mathrm{~mm}$]	${\mathrm{Rax}, 1^{\text {a }}}^{\text {a) }}$ [[kN]	$R_{k}{ }^{\text {a) }} \cdot[\mathrm{kN}]$	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{R}^{(1)}$) [[kN]	$\mathrm{Rk}^{\text {a) }}$. [kN]
				$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\begin{aligned} \alpha_{A} & =0^{\circ} \\ \alpha_{B} & =90^{\circ} \end{aligned}$	$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha B=0^{\circ} \end{aligned}$
11,3x 300	160	160	18,25	12,17	10,73	10,73	12,17
$11,3 \times 340$	180	180	20,85	12,82	11,38	11,38	12,82
11,3x 380	200	200	23,46	13,47	12,03	12,03	13,47
11,3x420	220	220	26,07	14,12	12,34	12,34	14,12
$11,3 \times 460$	240	240	26,67	14,77	12,34	12,34	14,77
11,3x500	260	260	31,28	15,21	12,34	12,34	15,21
11,3x540	280	280	33,89	15,21	12,34	12,34	15,21
11,3x580	300	300	36,49	15,21	12,34	12,34	15,21
11,3×620	320	320	39,10	15,21	12,34	12,34	15,21
$11,3 \times 660$	340	340	41,71	15,21	12,34	12,34	15,21
11,3x700	360	360	44,32	15,21	12,34	12,34	15,21
11,3x750	380	380	48,23	15,21	12,34	12,34	15,21
11,3x800	400	420	50,00	15,21	12,34	15,21	12,34
11,3×900	460	460	50,00	15,21	12,34	12,34	15,21
$11,3 \times 1000$	500	520	50,0	15,21	12,34	15,21	12,34

Calculation according to $\mathrm{FTA}-\mathrm{Il} / \mathrm{O} 224$. Wood density $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical valves provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated os equivalent to the max. possible load (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning valves Rd
with regard to the usage class and class of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma m$. The dimensioning values of the load-bearing capacity R_{d} should be contrassed with the dimensioning values of the loads ($\left.R_{d} \geq E_{d}\right)$.
Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}^{2}=0,9 \cdot \gamma_{\mathrm{M}}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $R_{d} \geq E_{d} . \rightarrow \min R_{k}=R_{d} \cdot \gamma M / k_{m o d}$
i.e. the characterissic minimum value is calculated based on: $\min \mathrm{R}_{k}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX WITH COUNTERSUNK HEAD AND DRILL POINT OR AG TIP 11,3 MM: TIMBER-TIMBER CONNECTION

Dimensions			Tension connection							
			Characterisicic value of the joint's lood-bearing capacity Rax, or Rk occ. to ETA-11/0024							
dl $\mathrm{xL}[\mathrm{mm}]$	A [mm]	$B[\mathrm{~mm}]$	$\mathrm{Rax}_{\text {a }} \mathrm{k}^{\text {a) }}$-[kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{Rax}_{\text {a }}, \mathrm{k}^{\mathrm{a}}$. [kN]	$\mathrm{Rk}^{\text {a) }}$. [kN]	${\mathrm{Rax}, \mathrm{k}^{\text {a }}}^{\text {) }}$ [KN$]$	$\mathrm{R}_{\mathrm{k}}{ }^{\text {) }}$. [kN]	$\mathrm{Raxax}^{(1)} \mathrm{k}^{\mathrm{a}} .[\mathrm{kN}]$	$\mathrm{Rk}^{\text {a) }} \cdot[\mathrm{kN}]$
			$\alpha=45^{\circ}$		$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha_{B}=45^{\circ} \end{aligned}$		$\begin{aligned} & \alpha_{A}=90^{\circ} \\ & \alpha B=90^{\circ} \end{aligned}$		$\begin{aligned} & \alpha A=45^{\circ} \\ & \alpha B=90^{\circ} \end{aligned}$	
11,3x300	120	120	16,98	12,01	16,98	12,01	16,98	12,01	16,98	12,01
11,3x340	140	120	18,51	13,09	18,51	13,09	18,51	13,09	18,51	13,09
11,3x380	140	140	23,72	16,77	23,72	16,77	23,72	16,77	23,72	16,77
11,3x420	160	160	25,25	17,85	25,25	17,85	25,25	17,85	25,25	17,85
11,3x460	180	160	26,78	18,93	26,78	18,93	26,78	18,93	26,78	18,93
11,3x500	180	200	31,99	22,62	31,99	22,62	31,99	22,62	31,99	22,62
11,3x540	200	200	33,52	23,70	33,52	23,70	33,52	23,70	33,52	23,70
11,3x580	220	220	35,04	24,78	35,04	24,78	35,04	24,78	35,04	24,78
11,3x620	220	240	40,26	28,47	40,26	28,47	40,26	28,47	40,26	28,47
11,3x660	240	240	41,79	29,55	41,79	29,55	41,79	29,55	41,79	29,55
11,3x700	260	260	43,31	30,63	43,31	30,63	43,31	30,63	43,31	30,63
11,3x750	280	280	46,14	32,63	46,14	32,63	46,14	32,63	46,14	32,63
11,3x800	300	280	48,97	34,63	48,97	34,63	48,97	34,63	48,97	34,63
$11,3 \times 900$	320	340	50,00	35,36	50,0	35,36	50,00	35,36	50,00	35,36
11,3x 1000	360	360	50,00	35,36	50,00	35,36	50,00	35,36	50,00	35,36

Calculation according to $\mathrm{ETA}-11 / 0024$. Wood density $\rho \mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculcted minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisici values of the load-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and class of the load duration: $\mathrm{Rd}_{\mathrm{d}}=\mathrm{Rk}_{\mathrm{k}} \cdot \mathrm{kmod}_{\mathrm{m}} / \gamma \mathrm{M}$. The dimensioning values of the load-bearing capacity Rd should be contrasted with the dimensioning values of the loads $\left(\mathrm{Rd}_{d} \geq\right.$ Ed).

Example:

Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $\mathrm{Q}_{\mathrm{k}}=3,00 \mathrm{kN}$. $\mathrm{kmod}_{\mathrm{m}}=0,9 . \gamma_{\mathrm{M}}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonssrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed} . \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characterisicic minimum value is calculated based on: $\min \mathrm{R}_{k}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{k}_{\mathrm{mod}} \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX ST WITH COUNTERSUNK HEAD AND DRILL POINT 6,5 TO 10,0 MM: STEEL-TIMBER JOINTS

Dimensions				Extraction resistance	Tension connection				Shearing	
				 Charactersisic value of the join's looctbearing capaciy Rax, a acc. 10 EAA- $\mathrm{II} / 0024$			\qquad $\operatorname{Rk}\left(\alpha=90^{\circ}\right)$ of the join's loadbe Rk acc. to ETA-II/O	ng		3 t ve of the joint's Rk acc. toEIA-11/002
$\mathrm{dl} \mathrm{xL}[\mathrm{mm}]$	t[mm]	$B[\mathrm{~mm}]$	$\mathrm{B} 45^{\circ}$ [mm]	$\mathrm{R}_{\mathrm{ax}, 1} \mathrm{l}^{\text {a) }}$-[kN]	$\mathrm{R}_{\mathrm{ax}, \mathrm{k}} \mathrm{K}^{\text {a) }} \cdot[\mathrm{KkN}]$	$\mathrm{R}_{\mathrm{ax}, 1} \mathrm{l}^{\text {a) }}$-[kN]	$\mathrm{R}_{\mathrm{k}}{ }^{\text {a) }} \cdot[\mathrm{kN}]$	$\mathrm{Rk}^{\text {a) }}$-[kN]	Rk ${ }^{\text {a) }}$. [kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]
					$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
6,5x 80	15	80	60	5,14	4,65	4,65	3,29	3,29	4,17	3,52
6,5x 100	15	100	80	6,73	6,24	6,24	4,41	4,41	4,17	3,52
6,5x 120	15	120	80	8,31	7,82	1,82	5,53	5,53	4,17	3,52
6,5×140	15	140	100	9,89	9,40	9,40	6,65	6,65	4,17	3,52
8,0x95	15	100	80	1,59	7,00	1,00	4,95	4,95	6,18	5,22
8, $\times 125$	15	120	100	10,43	9,84	9,84	6,96	6,96	6,18	5,22
$8,0 \times 155$	15	160	120	13,28	12,69	12,69	8,97	8,97	6,18	5,22
$8,8 \times 195$	15	200	140	17,07	16,48	16,48	11,65	11,65	6,18	5,22
8,0 220	15	220	160	19,44	18,85	18,85	13,33	13,33	6,18	5,22
8, $\times 245$	15	240	180	21,81	21,22	21,22	15,01	15,01	6,18	5,22
8,0 270	15	280	200	24,18	23,59	23,59	16,68	16,68	6,18	5,22
8,0x 295	15	300	220	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0x 330	15	340	240	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0x 375	15	380	280	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0x 400	15	400	280	25,00	25,00	25,00	17,68	17,68	6,18	5,22
$8,0 \times 430$	15	440	300	25,00	25,00	25,00	17,68	17,68	6,18	5,22
$8,0 \times 480$	15	480	340	25,00	25,00	25,00	17,68	17,68	6,18	5,22
$10,0 \times 125$	15	120	100	12,69	11,97	11,97	8,46	8,46	8,72	1,30
10,0 $\times 155$	15	160	120	16,15	15,43	15,43	10,91	10,91	8,72	1,30
10,0 $\times 195$	15	200	140	20,76	20,05	20,05	14,17	14,17	8,72	1,30
$10,0 \times 220$	15	220	160	23,65	22,93	22,93	16,21	16,21	8,72	1,30
10,0 245	15	240	180	26,53	25,81	25,81	18,25	18,25	8,72	1,30
10,0 270	15	280	200	29,41	28,70	28,70	20,29	20,29	8,72	1,30
10,0x 300	15	300	220	32,87	32,16	32,16	22,74	22,74	8,72	1,30
10,0×330	15	340	240	33,00	33,00	33,00	23,33	23,33	8,72	1,30
10,0x 360	15	360	260	33,00	33,00	33,00	23,33	23,33	8,72	1,30
10,0x400	15	400	280	33,00	33,00	33,00	23,33	23,33	8,72	1,30
$10,0 \times 450$	15	460	320	33,00	33,00	33,00	23,33	23,33	8,72	1,30
10,0x 500	15	500	360	33,00	33,00	33,00	23,33	23,33	8,72	1,30
10,0x 550	15	560	400	33,00	33,00	33,00	23,33	23,33	8,72	1,30
$10,0 \times 600$	15	600	420	33,00	33,00	33,00	23,33	23,33	8,72	1,30

Calculation according to ETA-11/0024. Wood density $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and class of the load duration: $\operatorname{Rd}=\mathrm{Rk}_{\mathrm{k}} \cdot \mathrm{kmod}^{2} / \gamma \mathrm{M}$. The dimensioning values of the load-bearing capacity Rd should be contrassed with the dimensioning values of the loads ($\left.\mathrm{R}_{d} \geq \mathrm{Ed}\right)$.
Example:
Characterisicic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $\mathrm{Q}_{\mathrm{k}}=3,00 \mathrm{kN}$. $\mathrm{kmod}=0,9 \cdot \gamma \mathrm{M}=1,3 . \rightarrow$ Dimensioning valve of the load $\mathrm{E} d=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$. The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{E}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\text {mi.e. }}$. the characterisicic minimum value is calculated based on: min $\mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.
Please note: These are planning vids. Projects must only be calculated by authorised persons.

KONSTRUX WITH COUNTERSUNK HEAD AND DRILL POINT OR AG TIP 11,3 MM: STEEL-TMBER CONNECTION

Dimensions				Extraction resistance	Tension connection				Shearing	
				 Charactersisic value of the join's loocthearing capacity Rax, , acc. 10 ETA-II/0024		Characterersici value o capacity Rax,k bzw.	the jinit's loadberim Rk acc. to EA-11/002	$\stackrel{v}{-}$		\square B ve of the join's Rk acc. to EA-11/0024
$\mathrm{dl} \mathrm{xL}[\mathrm{mm}]$	t[mm]	B [mm]	$B 45^{\circ}$ [mm]	$\mathrm{R}_{\text {ax, }},{ }^{\text {a) }}$. [KN]	$\left.\mathrm{Rax}_{\mathrm{ax}} \mathrm{k}^{\mathrm{a}}\right) \cdot[\mathrm{KN}]$	$R_{\text {ax, }} \mathrm{l}^{\text {a) }}$. [kN]	$\mathrm{Rk}^{\text {a) }}$. [kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{R}^{(0)}$. [kN]	Rk ${ }^{\text {a) }}$. [kN]
					$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
11,3x300	20	300	220	36,49	35,42	35,42	25,04	25,04	11,79	9,76
$11,3 \times 340$	20	340	240	41,71	40,63	40,63	28,73	28,73	11,79	9,76
11,3x 380	20	380	260	46,92	45,84	45,84	32,42	32,42	11,79	9,76
$11,3 \times 420$	20	420	300	50,0	50,0	50,0	35,36	35,36	11,79	9,76
$11,3 \times 460$	20	460	320	50,00	50,00	50,00	35,36	35,36	11,79	9,76
11,3x500	20	500	360	50,0	50,00	50,00	35,36	35,36	11,79	9,76
11,3x540	20	540	380	50,0	50,0	50,0	35,36	35,36	11,79	9,76
11,3x580	20	580	420	50,0	50,0	50,0	35,36	35,36	11,79	9,76
11,3x620	20	620	440	50,0	50,00	50,0	35,36	35,36	11,79	9,76
11,3×660	20	660	460	50,0	50,0	50,00	35,36	35,36	11,79	9,76
11,3x700	20	700	500	50,00	50,00	50,00	35,36	35,36	11,79	9,76
11,3x750	20	740	540	50,00	50,00	50,0	35,36	35,36	11,79	9,76
11,3x800	20	800	560	50,00	50,00	50,00	35,36	35,36	11,79	9,76
11,3x900	20	900	640	50,00	50,0	50,0	35,36	35,36	11,79	9,76
11,3x 1000	20	1000	700	50,00	50,00	50,00	35,36	35,36	11,79	9,76

Calculation according to $E T-11 / 0024$. Wood density $\rho \mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All valves are calculated minimum values and are subject to typographical and printing errors.
a) The characterisicic values of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characteristic valves of the load-bearing capacity Rk should be reaveced to dimensioning values Rd
with regard to the usage class and dass of the lood duration: $R_{d}=R_{k} \cdot K_{\text {mod }} / \gamma$ M. The dimensioning values of the lood-bearing capacity R_{d} should be contrasted with the dimensioning values of the loads ($\left.R_{d} \geq E_{d}\right)$.
Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable lood (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 \cdot \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \mathrm{min} \mathrm{Rk}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{k}_{\mathrm{mod}} \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by outhorised persons.

Eurotec

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 6,5 MM: MAIN-SECONDARY BEAM JOINTS

Calculation according to EAA-11/0024. Wood density $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations. All values are calculated minimum values and are subject to typographical and printing errors.
a) The characterisic valves of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characteristic values of the lood-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and class of the load duration: $R_{d}=R_{k} \cdot k_{\text {mod }} / \gamma \mathrm{M}$. The dimensioning values of the load-bearing capacity $R d$ should be contrasted with the dimensioning values of the loads ($\left.R_{d} \geq E_{d}\right)$.

Example:
Characterisic value for constant lood (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}^{2}=0,9 \cdot \gamma_{\mathrm{M}}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd} \geq \mathrm{Ed} . \rightarrow \mathrm{min} \mathrm{Rk}=\mathrm{Rd} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot \mathrm{I}, 3 / 0,0=10,40 \mathrm{kN} \rightarrow$ comparison with table values.
b) estimated with an efficient quantity of pairs of screws: 0,9 .

Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 8,0 MM: MAIN-SECONDARY BEAM JOINTS

Dimensions Main/secondary beam connection
$\mathrm{a}_{2}=\min .40 \mathrm{~mm}, \mathrm{a}_{2},=\min .24 \mathrm{~mm}, \mathrm{k}=\min .12 \mathrm{~mm}$
Charactersisic value of the joint's loachbearing capacity R_{k} occ. to EA- $11 / 0024$

$\mathrm{dl} \times \mathrm{L}$ [mm]	min . WSB [mm]	min. HSB [mm]	\min. WMB [mm]	min . $\mathrm{H} M \mathrm{BB}$ [mm]	$\mathrm{m}[\mathrm{mm}$]	β°	$\left.\left.R_{v, 1}, \mathrm{a}\right) \mathrm{b}\right)$-[kN]	Pair (n)
8,0x 245	80	200	100	200	87	45	16,43	1
	100						30,66	2
	140						44,16	3
	180						57,21	4
$8,0 \times 295$	80	220	120	220	104	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 330$	80	260	140	260	117	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 375$	80	280	160	280	133	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 400$	80	300	160	300	141	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 430$	80	320	180	320	152	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 480$	80	360	180	360	170	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4

Calculation according to $\mathrm{EA}-\mathrm{Il} / 0024$. Wood density $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumpions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characterisisic valves of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and class of the load duration: $\mathrm{Rd}=\mathrm{Rk} \cdot \mathrm{Kmod} / \gamma \mathrm{m}$. The dimensioning values of the load-bearing capacity Rd should be contrasted with the dimensioning values of the loads ($\mathrm{Rd} \geq \mathrm{Ed}$).
Example:
Characterisic value for constant lood (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 . \gamma_{\mathrm{M}}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{E}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculcted based on: $\min \mathrm{Rk}_{\mathrm{k}}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{Rk}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.
b) estimated with on efficient quantity of pairs of screws: $n, 9$.

Please note: These are planning viids. Projects must only be caluluated by authorised persons.

Gurotec

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 10,0 MM: MAIN-SECONDARY BEAM JOINTS

All values cre caluclated minimum volues and rer stbiect to typographical and piniting eroros.

Example:

\rightarrow Dimensioning value of the lood $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=1,20 \mathrm{kN}$.
The lood bearing capocity of the jointit is therefore considereded to have been demonstruted if $\mathrm{R}_{d} \geq \mathrm{E}_{d} \rightarrow \min \mathrm{R}_{\mathrm{K}}=\mathrm{R}_{d} \cdot \gamma_{M} / \mathrm{kmod}_{\mathrm{mod}}$

b) essimated with on efficient quantity of pais of screws: $n^{0,}$?

Please note: These cre planning idid. Projects must only be calculcied by wuthorised persons.

KONSTRUX ST WITH CYLINDER HEAD 6,5 MM

GEOMETRY AND MECHANICAL PROPERTIES

KonstruX ST-ZK 06,5xL -TX30								
Art. no.	$\begin{gathered} \lfloor \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{aligned} & L_{g_{1,} \text { eff }} \\ & {[\mathrm{mm}]} \end{aligned}$	PU	Pre-drilling diameter $\mathrm{Od}_{\mathrm{v}}[\mathrm{mm}]$	Characteristic pull-out resistance value $\mathrm{f}_{\mathrm{ax}, \mathrm{k}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	Characteristic tensile strength value $f_{\text {tens, }, 1}[k N]$	Characteristic yield moment $M_{y, k}[\mathrm{Nmm}]$	Characteristic yield strength $f_{y, 1}\left[\mathrm{~N} / \mathrm{mm}^{2}\right]$
904808	80	71	100	4,5	11,4	17,0	15000	1000
904809	100	91	100	4,5	11,4	17,0	15000	1000
904810	120	111	100	4,5	11,4	17,0	15000	1000
904811	140	131	100	4,5	11,4	17,0	15000	1000
904812	160	151	100	4,5	11,4	17,0	15000	1000
904813	195	186	100	4,5	11,4	17,0	15000	1000

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

Axial and edge distances

The minimum distances for KonstruX loaded exclusively in the axial direction in pre-drilled and non-pre-drilled holes in components measuring min. $t=65$ thick and min. 60 mm wide must be selected as follows

Axial distance parallel to the direction of the grain	al	[mm]	5.d	33
Axial distance perpendicular to the direction of the grain	12	[mm]	5.d	33
Distance from the centre of gravity of the screw area driven into the wood from the end grain sufface	al, ${ }^{\text {a }}$	[mm]	5.d	33
Distance from the centre of gravity of the screw area driven into the wood from the side grain sufface	02, 6	[mm]	3.d	20
Axial distance between a crossing pair of screws	02,k	[mm]	1,5•d	10
Reduced axial distance a2 perpendicular to the direction of the grain, if al $\cdot 02 \geq 25 \cdot \mathrm{~d}^{2}$	a2,red	[mm]	2,5•d	16

The axial and edge distances are minimum distances according to DIN EN 1995:2014 (EC5) and generally apply to fasteners subjected to transverse loads

al
Distance from the fasteners within a row in the direction of the grain

a2
Distance from the fasteners perpendicular to the direction of the grain

a3,
Distance between the fastener and the unloaded end of the end groin $90^{\circ} \leq \alpha \leq 270^{\circ}$

03,1
Distance between the fastener and the loaded end of the end grain $-90^{\circ} \leq \alpha \leq 90^{\circ}$
a4,
Distance between the fustener and the unloaded edge $180^{\circ} \leq \alpha \leq 360^{\circ}$
a4,

			Force $/$ fibre angle $\alpha=0^{\circ}$		Force $/$ fibre angle $\alpha=90^{\circ}$	
Axial distance parallel to the direction of the grain	al	[mm]	5.d	33	4.d	33
Axial distance perpendicular to the direction of the grain	02	[mm]	3.d	20	4.d	33
Distance from the centre of gravity of the screw area driven into the wood from the unloaded end of the end grain	a3,	[mm]	7.d	46	7.d	46
Distance from the centre of gravity of the screw area driven into the wood from the loaded end of the end groin	a3,	[mm]	12.d	78	7.d	46
Axial distance perpendicular to the unlooded edge	04,	[mm]	3.d	20	3.d	20
Axial distance from the loaded edge	04,	[mm]	3.d	20	7.d	46

When analysed, the minimum distances for KonstruX in non-pre-drilled holes, loaded in a crosswise direction, are as follows according to the position of the direction of the grain

[^1]
Eurotec

KONSTRUX ST WITH CYIINDER HEAD AND DRILL POINT
 6,5 MM: SHEARING STRENGTH RATIO WITHOUT PRE-DRILIING

Calculation according to ETA- $\mathrm{II} / 0024$. Wood density $\rho_{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characterisicic valves of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characteristic valves of the lood-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and class of the load duration: $\operatorname{Rd}=\mathrm{Rk}_{\mathrm{k}} \cdot \mathrm{kmod}_{\mathrm{m}} / \gamma \mathrm{M}$. The dimensioning values of the load-bearing capacity Rd should be contrassed with the dimensioning values of the loads ($\left.\mathrm{Rd}_{d} \geq \mathrm{Ed}\right)$.

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 6,5 MM: AXIAL PULL-OUT LOAD CAPACITY WITHOUT PRE-DRILIING

Odl xL[mm]	A [mm]	B [mm]	${\mathrm{Rax}, 1^{\text {a }}}^{\text {a) }}$ [[kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{Rax}_{\mathrm{ax}} \mathrm{K}^{\text {a) }} \cdot[\mathrm{KN}]$	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{Rax}_{\mathrm{ux}} \mathrm{k}^{\text {a) }}$.[kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{Rax}_{\mathrm{ax}} \mathrm{K}^{\text {a) }} \cdot[\mathrm{KN}]$	$\mathrm{Rk}^{\text {a) }} \cdot[\mathrm{lkN}]$
			$\alpha=45^{\circ}$		$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha B=45^{\circ} \end{aligned}$		$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha, B=90^{\circ} \end{aligned}$		$\begin{aligned} & \alpha A=45^{\circ} \\ & \alpha B=90^{\circ} \end{aligned}$	
6,5 $\times 160$	60	80	5,51	3,90	5,51	3,90	5,51	3,90	5,51	3,90
$6,5 \times 195$	80	80	6,04	4,27	6,04	4,27	6,04	4,27	6,04	4,27

Calculation according to $\mathrm{ETA}-\mathrm{II} / 0024$. Wood density $\rho_{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum valves and are subject to typographical and printing errors.
a) The characcteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisici values of the lood-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and class of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma \mathrm{M}$. The dimensioning values of the load-bearing capacity R_{d} should be contrasted with the dimensioning values of the loads ($\left.\mathrm{R}_{\mathrm{d}} \geq \mathrm{E} d\right)$.

KONSTRUX ST WITH CYIINDER HEAD AND DRILL POINT 6,5 MM: MAIN-SECONDARY BEAM JOINTS

Dimensions

Main/secondary beam connection

Calculation according to $E A-11 / 0024$. Wood density $\rho \mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should he viewed as subject to the assumptions that have been made and represent example calculations. All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characterisici values of the lood-bearing capacity Rks should be reduced to dimensioning values Rd with regard to the usage class and dlass of the load duration: $\mathbb{R d}_{d}=R_{k} \cdot \mathrm{~K}_{\text {mod }} / \gamma \mathrm{M}$. The dimensioning values of the load-bearing capacity R_{d} should be contrasted with the dimensioning values of the loads ($\mathrm{R}_{d} \geq \mathrm{E}_{\mathrm{d}}$).

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

ANGLE-BRACKET SCREW (ABS)

ADVANTAGES

- Quick and easy screwing-in

Reduced spliting effect
National and international approvals

DESCRIPTION

The Eurotec Angle-bracket screw (ABS) is made of hardened carbon steel and is specially designed for joints between steel sheet and wood. The spliting effect in the wood is reduced by the geometry of the screw tip. In addition, the screw is characterized, among other things, by the smooth shank under the head, which allows load transfer during shearing.

Angle-bracket screw	(E)	Art. no.	Dimensions [mm]	Drive	PU
Blue galvanised		945343	$5,0 \times 25$	TX20	250
		945232	$5,0 \times 35$	TX20	250
		945241	$5,0 \times 40$	TX20	250
		945233	$5,0 \times 50$	TX20	250
		945344	$5,0 \times 60$	TX20	250
		945345	$5,0 \times 70$	TX20	250

TECHNICAL INFORMATIONS
 ANGLE-BRACKET SCREW, STEEL BLUE GALVANISED

Calculation according to $\mathrm{ETA}-\mathrm{Il} / 0024$. Wood density $\mathrm{\rho k}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values. Typesetting and printing errors are excepted.
a) The characterisicic values of the load-bearing capacity Rk should not be treated os equivalent to the max. possible load (the max. force). Characteristic values of the load-bearing capacity Rk are to be reduced to the design valves Rd as regards the service class and class of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma M$. The design values of the lood- bearing capacity $R d$ should be compared to the design values of the loads $\left(R_{d} \geq E_{d}\right)$.

Example:

Characteristic value for constant load (dead load) $G_{k}=2,00 \mathrm{kN}$ and variable load (e.g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{k}_{\mathrm{mod}}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Rated value of the load $E_{d}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
Load-bearing capacity of the connection is proved if $\mathrm{R}_{d} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \mathrm{min} \mathrm{R}_{k}=\mathrm{R}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
That is, the characterisic minimum value of the load-bearing capacity is calculated as: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{Rk}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ aligned with table values.
Please note: These are planning aids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preiminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance wiht the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

PANELTWISTEC

ADVANTAGES

- Quick and easy screwing-in

Reduced splitting effect

- National and international approvals
- Due to the special coating, the screw has a higher corrosion resistance than conventional galvanizing
- Can be used in service classes 1 and 2
- Free of chromium (VI) oxide
- Resistant to mechanical stress
- Prevents contact corrosion with attachments
- No hammering of the screws when screwing in due to TX-Drive

DESCRIPTION

Paneltwistec wood construction screws may generally be installed in CLT without predrilling. The Paneltwistec is a wood construction screw with a special screw tip and milling ribs above the thread. The cutting notch on the screw tip ensures fast gripping and less splitting effect when screwing in. The Paneltwistec AG instead features a folded-down thread, which reduces the screw-in torque. Paneltwistec wood construction screws are available in both countersunk head and flanged button-head variants, as well as made of coated carbon steels and various stainless steels.

Gurotec

TECHNICAL INFORMATION
PANELTWISTEC AG, COUNTERSUNK-HEAD, BLUE GALVANISED

Dimensions				Extraction resistance	Head pull-through resistance	Wood-Wood shearing				Steel-Wood shearing		
						$\mathrm{V}\left(\mathrm{a}=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $\mathrm{V}\left(\alpha=90^{\circ}\right.$						
$\begin{aligned} & \mathrm{dl} \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathrm{dk} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} A D \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ {[\mathrm{~mm}]} \end{gathered}$	$\mathrm{Fax}_{\mathrm{ax}}, 90, \mathrm{Rk}$ [kN]	Fax,head, Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	$\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$	Fla,Rk [kN]	Fla,Rk [kN]
								$\alpha A D=0^{\circ}$	$\angle A D=90^{\circ}$			
						$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\alpha \mathrm{EI}=90^{\circ}$	aEI $=0^{\circ}$		$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
3,5×30	7,0	12	18	0,84	0,59					1		86
3,5×35	7,0	14	21	0,98	0,59					1		92
3,5440	7,0	16	24	1,12	0,59					1		95
3,5445	7,0	18	27	1,26	0,59					1		99
3,5×50	7,0	20	30	1,40	0,59					1		02
4,0×30	8,0	12	18	0,93	0,7					2		91
4,0×35	8,0	14	21	1,08	0,71					2		107
4,0×40	8,0	16	24	1,24	0,7					2		15
4,0x45	8,0	18	27	1,39	0,71					2		19
4,0×50	8,0	20	30	1,55	0,71					2		23
4,0×60	8,0	24	36	1,86	0,7					2		31
4,0×70	8,0	28	42	2,17	0,71					2		138
4,0x80	8,0	32	48	2,48	0,71					2		46
4,540	9,0	16	24	1,35	0,97					2		34
4,5 45	9,0	18	27	1,52	0,97					2		40
4,5 $\times 50$	9,0	20	30	1,69	0,97					2		44
4,5 $\times 60$	9,0	24	36	2,03	0,97					2		53
4,5 $\times 70$	9,0	28	42	2,36	0,97					2		161
4,5×80	9,0	32	48	2,70	0,97					2		70
5,0×40	10,0	16	24	1,45	1,20					2		44
5,0×45	10,0	18	27	1,63	1,20					2		16
5,0×50	10,0	20	30	1,82	1,20					2		167
$5,0 \times 60$	10,0	24	36	2,18	1,20					2		,76
5,0×70	10,0	28	42	2,54	1,20					2		185
5,0×80	10,0	32	48	2,90	1,20					2		94
$5,0 \times 90$	10,0	36	54	3,27	1,20					2		03
5,0 100	10,0	40	60	3,63	1,20					2		12
5,0× 120	10,0	50	70	4,24	1,20					2		27

Calculation according to $\mathrm{ETA}-\mathrm{II} / 0024$. Wood density $\rho \mathrm{k}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characterisicic values of the lood-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and dass of the load duration: $\mathbb{R}_{d}=\mathbb{R}_{k} \cdot \mathcal{k}_{\bmod } / \gamma$. The dimensioning values of the load bearing capacity R_{d} should be contrasted with the dimensioning values of the loads ($\left.\mathrm{R}_{d} \geq \mathrm{E}_{\mathrm{d}}\right)$.

Example:

Characterisic valve for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}^{2}=0,9 \cdot \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{E} d=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $R_{d} \geq \mathrm{E}_{\mathrm{d}} \rightarrow \mathrm{min} \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\mathrm{m}}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{k}=\mathrm{R}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values..

Please note: These are planning cids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised
persons in occordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

Calculation according to $\mathrm{ETA}-\mathrm{Il} /$ /O024. Wood density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage dlass and class of the load duration: $\mathbb{R d}_{d}=\mathbb{R}_{k} \cdot \operatorname{knod}_{\mathrm{mod}} / \gamma \mathrm{M}$. The dimensioning values of the load-bearing capacity \mathbb{R}_{d} should be contrasted with the dimensioning values of the loads ($\left.\mathbb{R}_{d} \geq \mathrm{E}_{d}\right)$.

Example:

Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $E d=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{k}_{\bmod } \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

Gurotec

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are bassed on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

Paneltwistec AG	Art. no.	Dimensions [mm]	Drive	PU
Flanged button-head screw, blue galvanised	946158	4,0 40	TX20	500
	946159	4,0 $\times 50$	TX20	500
	946160	4,0×60	TX20	500
	946161	4,5 5 50	TX20	200
,hinhthentrss	946162	4,5 560	TX20	200
	946163	4,5x70	TX20	200
ADVANTAGES	946037	5,0 $\times 50$	TX25	200
	946038	$5,0 \times 60$	TX25	200
and head pull-hrough capacity	946039	$5,0 \times 70$	TX25	200
	946040	5,0×80	TX25	200
This makes for better use of the screw's tensile load-bearing strength	946042	5,0× 100	TX25	200
	945947	6,0 $\times 30$	TX30 -	100
	945948	6,0 $\times 40$	TX30 -	100
	945712	6,0 $\times 50$	TX30 -	100
	945713	6,0×60	TX30-	100
	945716	6,0×70	TX30-	100
	945717	6,0x80	TX30 -	100
	945718	6,0×90	TX30-	100
	945719	6,0× 100	TX30-	100
	945720	6,0× 110	TX30-	100
	945721	$6,0 \times 120$	TX30 -	100
	945722	6,0×130	TX30 -	100
	945723	6,0×140	TX30-	100
	945724	$6,0 \times 150$	TX30 -	100
	945725	6,0×160	TX30-	100
	945726	6,0×180	TX30 -	100
	945727	6,0×200	TX30-	100
	945728	6,0x 220	TX30 -	100
	945729	6,0×240	TX30 -	100
	945730	6,0×260	TX30 -	100
	945731	6,0x 280	TX30 -	100
	945732	6,0×300	TX30 -	100

Paneltwistec AG	Art. no.	Dimensions [mm]	Drive	PU
Flanged bution-head screw, blue galvanised	945806	8,0×60	TX40	50
	944588	$8,0 \times 80$	TX40 -	50
\rightarrow chathathatercer	944589	$8,0 \times 100$	TX40	50
Whenthethrses	944590	$8,0 \times 120$	TX40 -	50
	94459	$8,0 \times 140$	TX40 -	50
ADVANTAGES	94592	$8,0 \times 160$	TX40	50
	94593	$8,0 \times 180$	TX40	50
The larger head diameter allows for considerably higher torque and head pull-through capacity	94459	$8,0 \times 200$	TX40	50
and head puli-through capacity	94595	8,0x 220	TX40	50
This makes for better use of the screw's tensile load-bearing strength	944596	8,0×240	TX40 -	50
	94459	8,0x 260	TX40 -	50
	94459	8,0×280	TX40 -	50
	944599	8,0x 300	TX40	50
	94660	8,0 $\times 320$	TX40 -	50
	94601	8,0x 340	TX40	50
	94460	8,0×360	TX40 -	50
	94603	8,0x 380	TX40 -	50
	94604	$8,0 \times 400$	TX40	50
	94605	8,0 420	TX40 -	25
	946606	$8,0 \times 440$	TX40	25
	94607	8,0 460	TX40	25
	944608	$8,0 \times 480$	TX40 -	25
	94609	8,0 500	TX40	25
	944610	8,0x550	TX40	25
	946611	8,0x600	TX40	25

Gurotec

TECHNICAL INFORMATION
 PANELTWISTEC AG, FLANGE BUTTON HEAD, BLUE GALVANISED

Dimensions				Extraction resistance	Head pull-through resistance	Wood-Wood shearing				Steel-Wood shearing		
$-\stackrel{-}{-\frac{d k_{1}}{-}}$						$\mathrm{V}\left(\mathrm{a}=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right.$ $V\left(\alpha=90^{\circ}\right)$		$\begin{aligned} & V\left(\mathrm{a}=90^{\circ}\right) \\ & V\left(\mathrm{a}=90^{\circ}\right) \\ & V\left(\mathrm{a}=90^{\circ}\right) \\ & \square \\ & V_{\left(\alpha=0^{\circ}\right)} \end{aligned}$				
$\begin{aligned} & \mathrm{dl} \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} d k \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{AD} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{El} \\ {[\mathrm{~mm}]} \end{gathered}$	$F_{a x}, 90$,Rk [kN]	Fox,head,Rk [kN]	Fla, Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	$\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$	Fla,Rk [kN]	Fla,Rk [kN]
								$\alpha_{A D}=0^{\circ}$	$\alpha_{A D}=90^{\circ}$			
						$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\alpha_{\text {EE }}=90^{\circ}$	$\alpha_{E I}=0^{\circ}$		$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
4,0x40	10,0	16	24	1,24	1,20					2		
$4,0 \times 50$	10,0	20	30	1,55	1,20					2		
$4,0 \times 60$	10,0	24	36	1,86	1,20					2		
4,5x 50	11,0	20	30	1,69	1,45					2		44
4,5x60	11,0	24	36	2,03	1,45					2		
4,5×70	11,0	28	42	2,36	1,45					2		
5,0x50	12,0	20	30	1,82	1,73					2		
5,0×60	12,0	24	36	2,18	1,73					2		
5,0×70	12,0	28	42	2,54	1,73					2		
$5,0 \times 80$	12,0	32	48	2,90	1,73					2		
5,0x 100	12,0	40	60	3,63	1,73					2		
6,0×30	14,0	6	24	1,64	2,35					2		20
$6,0 \times 40$	14,0	16	24	1,64	2,35					2		63
6,0x50	14,0	20	30	2,05	2,35					2		
6,0×60	14,0	24	36	2,46	2,35					2		26
$6,0 \times 70$	14,0	28	42	2,87	2,35					2		36
$6,0 \times 80$	14,0	32	48	3,28	2,35					2		
6,0×90	14,0	36	54	3,69	2,35					2		
$6,0 \times 100$	14,0	40	60	4,10	2,35					2		67
6,0× 110	14,0	44	66	4,79	2,35					2		77
6,0× 120	14,0	50	70	4,79	2,35					2		84
6,0×130	14,0	60	70	4,79	2,35					2		84
$6,0 \times 140$	14,0	70	70	4,79	2,35					2		84
6,0 $\times 150$	14,0	80	70	4,79	2,35					2		84
$6,0 \times 160$	14,0	90	70	4,79	2,35					2		84
6,0×180	14,0	110	70	4,79	2,35					2		84
6,0×200	14,0	130	70	4,79	2,35					2		84
6,0×220	14,0	150	70	4,79	2,35					2		84
6,0×240	14,0	170	70	4,79	2,35					2		84
6,0 $\times 260$	14,0	190	70	4,79	2,35					2		84
6,0×280	14,0	210	70	4,79	2,35					2		84
6, 0×300	14,0	230	70	4,79	2,35					2		84

All values rer caluclated minimum values and are slibect to typographical and piniting eroros.
a) The charocterisisic values of fhe load.bearing capacity Rk cannot be tereted os equivilent to the max. possible lood (the max. fore). Characterisic values of the lood-bearing capacity Rk should be reduved to dimensioning values Rd

Example:

\rightarrow Dimensioning value of the lood $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=1,20 \mathrm{kN}$

i.e. the characteristic minimum value is calculcted bosed on: min $\mathrm{R}_{k}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{M} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison wiht hable values.

Please note: These are planning dids. Projects must only be calculcted by wuthorised persons.

Dimensions				Extraction resistance	Head pull-through resistance	Wood-Wood shearing				Steel-Wood shearing		
					$F_{a x, \text { head, Rk }}$	$V\left(\alpha=0^{\circ}\right)$ $V\left(a=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$						
$\begin{aligned} & d l \times l \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathrm{dk} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{array}{r} \mathrm{AD} \\ {[\mathrm{~mm}} \end{array}$	$\begin{gathered} \mathrm{ET} \\ {[\mathrm{~mm}]} \end{gathered}$	$F_{\text {ax }}, 90$, Rk [kN]	$\begin{gathered} \text { Fax head, Rk }_{[k N]} \end{gathered}$	$F_{l a, R k}$ [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	$\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$	Fla,Rk [kN]	Fla,Rk [kN]
								$\alpha A D=0^{\circ}$	$\alpha A D=90^{\circ}$			
						$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\alpha \mathrm{ET}=90^{\circ}$	$\alpha_{E T}=0^{\circ}$		$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
$8,0 \times 80$	22,0	30	50	4,26	5,81	4,14	3,34	4,14	3,34	3	4,56	3,94
$8,0 \times 100$	22,0	40	60	5,33	5,81	4,83	4,01	4,83	4,01	3	4,83	4,20
$8,0 \times 120$	22,0	50	70	5,86	5,81	4,95	4,32	4,95	4,32	3	4,96	4,34
$8,0 \times 140$	22,0	40	100	8,44	5,81	4,95	4,13	4,95	4,13	3	5,60	4,98
$8,0 \times 160$	22,0	60	100	8,44	5,81	4,95	4,32	4,95	4,32	3	5,60	4,98
$8,0 \times 180$	22,0	80	100	8,44	5,81	4,95	4,32	4,95	4,32	3	5,60	4,98
$8,0 \times 200$	22,0	100	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 220$	22,0	120	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 240$	22,0	140	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 260$	22,0	160	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 280$	22,0	180	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 300$	22,0	200	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 320$	22,0	220	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 340$	22,0	240	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 360$	22,0	260	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 380$	22,0	280	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 400$	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 420$	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 440$	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 460$	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 480$	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 500$	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 550$	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98
$8,0 \times 600$	22,0	300	100	8,44	5,81	4,95	4,32	4,32	4,95	3	5,60	4,98

Calculation according to $\mathrm{EA}-11 / 0024$. Wood density $\rho \mathrm{pk}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic valves of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and dlass of the load duration: $\mathrm{Rd}=\mathrm{Rk}_{\mathrm{R}} \cdot \mathrm{Kmod} / \gamma$ M. The dimensioning values of the load-bearing capacity Rd should be contrasted with the dimensioning values of the loads ($\mathrm{Rd} \geq \mathrm{Ed}$).

Example:

Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}^{2}=0,9 \cdot \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd} \geq \mathrm{Ed} . \rightarrow \mathrm{min} \mathrm{Rk}=\mathrm{Rd} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{k}=\mathrm{R}_{d} \cdot \gamma_{M} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

Eurotec

Dimensions				Extraction resistance	Head pull-through resistance	Wood-Wood shearing				Steel-Wood shearing	
$\begin{aligned} & \mathrm{dl} \mathrm{xL} \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathrm{dk} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} A D \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{El} \\ {[\mathrm{~mm}]} \end{gathered}$	$F_{a x}, 90$, Rk [kN]	$\begin{gathered} \mathrm{Fax}_{\text {head, } \mathrm{Rk}} \\ {[\mathrm{kNN}]} \end{gathered}$	Fla, Rk [kN]	$F_{l a, R k}$ [kN]	Fla,Rk [kN]	Fla,Rk [kN]	$\begin{array}{c\|c} t & F_{\text {la, Rk }} \\ {[\mathrm{mm}]} & {[\mathrm{kN}]} \end{array}$	F la, Rk [kN]
								$\alpha A D=0^{\circ}$	$\angle A D=90^{\circ}$		
						$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\alpha \mathrm{ET}=90^{\circ}$	$\alpha \mathrm{ET}=0^{\circ}$	$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
$10,0 \times 100$	25,0	40	60	6,48	7,50	6,44	5,08	6,44	5,08	6,78	5,81
$10,0 \times 120$	25,0	50	70	7,13	7,50	6,94	5,74	6,94	5,74	6,94	5,97
$10,0 \times 140$	25,0	40	100	10,26	1,50	6,70	5,34	6,70	5,34	$3 \quad 7,72$	6,76
$10,0 \times 160$	25,0	60	100	10,26	7,50	7,03	6,07	7,03	6,07	7,72	6,76
$10,0 \times 180$	25,0	80	100	10,26	7,50	7,03	6,07	7,03	6,07	7,72	6,76
$10,0 \times 200$	25,0	100	100	10,26	7,50	7,03	6,07	6,07	7,03	7,72	6,76
$10,0 \times 220$	25,0	120	100	10,26	7,50	1,03	6,07	6,07	7,03	$3 \quad 7,72$	6,76
$10,0 \times 240$	25,0	140	100	10,26	7,50	7,03	6,07	6,07	7,03	$3 \quad 7,72$	6,76
$10,0 \times 260$	25,0	160	100	10,26	7,50	7,03	6,07	6,07	7,03	$3 \quad 7,72$	6,76
$10,0 \times 280$	25,0	180	100	10,26	7,50	7,03	6,07	6,07	7,03	7,72	6,76
$10,0 \times 300$	25,0	200	100	10,26	1,50	1,03	6,07	6,07	7,03	7,72	6,76
$10,0 \times 320$	25,0	220	100	10,26	1,50	7,03	6,07	6,07	7,03	$3 \quad 7,72$	6,76
$10,0 \times 340$	25,0	240	100	10,26	7,50	7,03	6,07	6,07	7,03	3 7,72	6,76
$10,0 \times 360$	25,0	260	100	10,26	7,50	1,03	6,07	6,07	7,03	$3 \quad 7,72$	6,76
$10,0 \times 380$	25,0	280	100	10,26	7,50	7,03	6,07	6,07	7,03	7,72	6,76
10,0× 400	25,0	300	100	10,26	7,50	7,03	6,07	6,07	7,03	$3 \quad 7,72$	6,76

Calculation according to EA- $11 / 0024$. Wood density $\mathrm{pk}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations. All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and class of the load duration: $\mathrm{Rd}_{d}=\mathrm{Rk}_{k} \cdot \mathrm{kmod}_{\mathrm{m}} / \gamma \mathrm{M}$. The dimensioning values of the load-bearing capacity Rd should be contrasted with the dimensioning values of the loads ($\mathrm{R}_{d} \geq \mathrm{Ed}_{\mathrm{d}}$).

Example:

Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}^{2}=0,9 \cdot \gamma \mathrm{~m}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd} \geq \mathrm{Ed} \cdot \rightarrow \min \mathrm{Rk}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma \mathrm{m} / \mathrm{kmod}$
i.e. the characterisicic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{R}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,9 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

PANELTWISTEC, PANELTWISTEC AG

HARDENED STAINLESS STEEL

Paneltwistec :CE	Art. no.	Dimensions [mm]	Drive	PU
Countersunkhead, hardened stainless steel	90477	4,0x40	TX20	500
	904775	$4,0 \times 45$	TX20	500
	90476	4,0 $\times 50$	TX20	500
Hornrorrorror	90447	$4,0 \times 60$	TX20	500
	904778	4,5 $\times 45$	TX20	200
Rost ${ }^{\text {coishathe }}$	90479	4,5 550	TX20	200
fretf	90488	4,5 560	TX20	200
	904881	4,5 $\times 70$	TX20	200
	100981	4,5×80	TX20	200
ADVANTAGES	904882	$5,0 \times 50$	TX25	200
	90488	5,0×60	TX25	200
- Limited resistance to acid	90488	$5,0 \times 70$	TX25	200
Not suitable for use with woods containing tanning agents such as	904885	$5,0 \times 80$	TX25	200
cumarú, oak, merbau, robinia, etc.	90488	5,0×90	TX25	100
Magnetised	904011	$5,0 \times 100$	TX25	100
Stainless steel in accordance with DIN 10088	904012	$6,0 \times 60$	TX30	100
The screw is suitable for use in timber-timber ioints in outdoor	904013	$6,0 \times 70$	TX30 -	100
installations and is used in garden, façade and balcony construction	904014	6,0 080	TX30	100
instalarions and is used in garden, façade and balcony construction	904015	6,0×90	TX30 -	100
	904016	$6,0 \times 100$	TX30 -	100
	904017	6,0 120	TX30 -	100
	904018	$6,0 \times 140$	TX30	100
	904019	$6,0 \times 160$	TX30 •	100

Paneltwistec \quad (E)	Art. no.	Dimensions [mm]	Drive	PU
Flanged button-head, hardened stainless steel	945778	8,0×80	TX40 -	50
	945770	8,0 $\times 100$	TX40 -	50
()	945271	$8,0 \times 120$	TX40 -	50
	94572	8,0 140	TX40 -	50
	945364	$8,0 \times 160$	TX40 -	50
Rost ${ }^{\circ}$	945365	$8,0 \times 180$	TX40 -	50
fret	945366	$8,0 \times 200$	TX40	50
	945367	8,0×220	TX40 -	50
	945368	8,0 240	TX40	50
ADVANTAGES	945369	8,0x 260	TX40	50
- Also suitable for fastening over-rafter insulation	945370	$8,0 \times 280$	TX40	50
- The larger head diameter allows for considerably higher torque	945371	8,0x 300	TX40 -	50
and head pull-hrough capacity	945372	8,0x 320	TX40 -	50
. This makes for better use of the screw's tensile load-bearing strength	945373	8,0x 340	TX40	50
	945374	8,0x 360	TX40 -	50
	945375	8,0x 380	TX40 -	50
	945376	8,0x 400	TX40 -	50

Paneltwistec AG	\% C E	Art. no.	Dimensions [mm]	Drive	PU
Flanged button-head, hardened stainless steel	为	975772	6,0 $\times 60$	TX30	100
		975773	6,0 $\times 80$	TX30	100
		97577	$6,0 \times 100$	TX30	100
Thendernerness:-		975775	$6,0 \times 120$	TX30	100
		975776	$6,0 \times 140$	TX30	100
Eidelstatio		97577	$6,0 \times 160$	TX30 ${ }^{\circ}$	100

Gurotec

Paneltwistec A2	\% C	Art. no.	Dimensions [mm]	Drive	PU
Flanged button-head, Stainless steel		903211	$8,0 \times 80$	TX40 ${ }^{\circ}$	50
		903212	8,0 $\times 100$	TX40 -	50
		903213	$8,0 \times 120$	TX40 -	50
	\longrightarrow	903214	8,0 $\times 140$	TX40 -	50
		903215	8,0 $\times 160$	TX40 -	50
Edelstany		903216	8,0 $\times 180$	TX40 -	50
Rost		903217	8,0 200	TX40	50
rret		903218	8,0 $\times 220$	TX40 -	50
		903219	8,0 240	TX40 -	50
ADVANTAGES		903220	8,0 $\times 260$	TX40 -	50
- Limited resistance to acid		903221	$8,0 \times 280$	TX40	50
		903222	8,0 $\times 300$	TX40	50
- Not suitable for atmospheres containing chlorine		903223	8,0 $\times 320$	TX40	50
		903224	8,0 $\times 340$	TX40 -	50
		903225	8,0 $\times 360$	TX40	50
		903226	8,00 380	TX40 -	50
		903227	$8,0 \times 400$	TX40 -	50

SAWTEC
WOOD CONSTRUCTION SCREW mADE OF HARDENED CARBON STEEL

ADVANTAGES OF THE SCREW HEAD

. Saw teeth under the head reduce chip placement

- No hammering of the screws when screwing in due to TX-Drive
- Low splitting effect

Better "bite" of the screw

ADVANTAGES FRICTION PART

- Friction part creates space for the shank, thereby reduces the insertion resistance

ADVANTAGES THREAD

- The coarse thread is equipped with sharply rolled flanks to the tip
- Enables fast screwing-in

ADVANTAGES DAG TIP

The special geometry of the DAG screw tip ensures a reduction of the screwing torque and also leads to a lower spliting effect when screwing-in

DESCRIPTION

The SawTec is a wood construction screw with a special screw tip and saw teeth below the head. The screw has a double-stage cylinder head. The special geometry of the screw tip reduces the screwing torque and also leads to a lower spliting effect when screwing in.

SawTec

Art. no.	Dimensions [mm]	Drive	PU
954115	$5,0 \times 40$	TX25 •	200
954117	$5,0 \times 50$	TX25 •	200
954118	$5,0 \times 60$	TX25 •	200
954119	$5,0 \times 70$	TX25 •	200
954120	$5,0 \times 80$	TX25 •	200
954121	$5,0 \times 90$	TX25 •	200
954122	$5,0 \times 100$	TX25 •	200
954124	$5,0 \times 120$	TX25 •	200
954128	$6,0 \times 60$	TX30 -	100
954129	$6,0 \times 70$	TX30 -	100
954130	$6,0 \times 80$	TX30 -	100
954131	$6,0 \times 100$	TX30 -	100
954133	$6,0 \times 120$	TX30 -	100
954135	$6,0 \times 140$	TX30-	100
954137	$6,0 \times 160$	TX30-	100
954138	$6,0 \times 180$	TX30 -	100
954145	$8,0 \times 80$	TX40 -	50
954146	$8,0 \times 100$	TX40 -	50
954147	$8,0 \times 120$	TX40 -	50
954148	$8,0 \times 140$	TX40 -	50
954149	$8,0 \times 160$	TX40 -	50
954150	$8,0 \times 180$	TX40 -	50
954151	$8,0 \times 200$	TX40 -	50
954152	$8,0 \times 220$	TX40 -	50
954153	$8,0 \times 240$	TX40 -	50
954154	$8,0 \times 260$	TX40 -	50
954155	$8,0 \times 280$	TX40 -	50
954156	$8,0 \times 300$	TX40 -	50
954157	$8,0 \times 320$	TX40 -	50
954158	$8,0 \times 340$	TX40 -	50
954159	$8,0 \times 360$	TX40 -	50
954160	$8,0 \times 380$	TX40 -	50
954161	$8,0 \times 400$	TX40 -	50
954162	$10,0 \times 100$	TX50 •	50
954163	$10,0 \times 120$	TX50 •	50
954164	$10,0 \times 140$	TX50 •	50
954165	$10,0 \times 160$	TX50 •	50
954166	$10,0 \times 180$	TX50 •	50
954167	$10,0 \times 200$	TX50 •	50
954168	$10,0 \times 220$	TX50 •	50
954169	$10,0 \times 240$	TX50 •	50
954170	$10,0 \times 260$	TX50 •	50
954171	$10,0 \times 280$	TX50 •	50
954172	$10,0 \times 300$	TX50 •	50
954173	$10,0 \times 320$	TX50 •	50
954174	$10,0 \times 340$	TX50 •	50
954175	$10,0 \times 360$	TX50 •	25
954176	$10,0 \times 380$	TX50 •	25
954177	$10,0 \times 400$	TX50 •	25

Gurotec

TECHNICAL INFORMATION
 SAWTEC, CYLINDER HEAD, BLUE GALVANISED

Dimensions				Extraction resistance	Head pull-through resistance	Wood-Wood shearing				Steel-Wood shearing		
$\stackrel{-\frac{\mathrm{dk}}{1}}{\stackrel{-}{\square}}$						$V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$				v. $V\left(\alpha=0^{\circ}\right)$ v \qquad V $\left(\alpha=90^{\circ}\right.$		
$\begin{aligned} & \mathrm{dl} \mathrm{xL} \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathrm{dk} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} A D \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { It } \\ {[\mathrm{mm}]} \end{gathered}$	$F_{a x}, 90$,Rk [kN]	$F_{a x, h e a d, R k}$ [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	$\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$	Fla,Rk [kN]	Fla,Rk [kN]
								${ }^{\prime A D}=0^{\circ}$	$\angle A D=90^{\circ}$			
						$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\alpha_{\text {EE }}=90^{\circ}$	$\alpha \mathrm{E}=0^{\circ}$		$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
$5,0 \times 40$	10,5	16	24	1,45	1,10	1,09				2		,44
5,0 50	10,5	20	30	1,82	1,10	1,22				2		1,67
5,0×60	10,5	24	36	2,18	1,10	1,31				2		,76
5,0x70	10,5	28	42	2,54	1,10	1,41				2		1,85
$5,0 \times 80$	10,5	32	48	2,90	1,10	1,49				2		,94
$5,0 \times 90$	10,5	36	54	3,27	1,10	1,49				2		,03
5, $\times 100$	10,5	40	60	3,63	1,10	1,49				2		, 12
5,0×120	10,5	60	60	3,63	1,10	1,49				2		, 12
6,0×60	13,0	24	36	2,46	1,69	1,70				2		,26
6,0x70	13,0	28	42	2,87	1,69	1,81				2		,36
6,0×80	13,0	32	48	3,28	1,69	1,92				2		2,46
6,0×90	13,0	36	54	3,69	1,69	2,4				2		2,57
$6,0 \times 100$	13,0	40	60	4,10	1,69	2,07				2		2,67
6,0×110	13,0	50	60	4,10	1,69	2,07				2		2,67
6, 6×120	13,0	60	60	4,10	1,69	2,07				2		2,67
6,0×130	13,0	60	70	4,9	1,69	2,07				2		2,84
6,0×140	13,0	70	70	4,79	1,69	2,07				2		2,84
6,0×150	13,0	80	70	4,79	1,69	2,07				2		2,84
$6,0 \times 160$	13,0	90	70	4,9	1,69	2,07				2		2,84
6,0×180	13,0	110	70	4,9	1,69	2,07				2		2,84

Calculation according to $\mathrm{ETA}-11 / 0024$. Wood density $\mathrm{pk}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and dlass of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma \mathrm{m}$. The dimensioning values of the load-bearing capacity Rd should be contrasted with the dimensioning values of the loods ($\left.R_{d} \geq \mathrm{E}_{\mathrm{d}}\right)$.

Example:

Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN}$. $\mathrm{mmod}^{2}=0,9 \cdot \gamma_{\mathrm{M}}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \mathrm{min} \mathrm{Rk}=\mathrm{Rd} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{Rk}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

Gurotec

Calculation according to $\mathrm{ETA}-\mathrm{Il} / \mathrm{OO24}$. Wood density $\mathrm{\rho k}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical valves provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the lood-bearing capacity Rk should be reduced to dimensioning values Rd

Example:
Characterisic value for constant load (deed weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN}$. $\mathrm{kmod}^{2}=0,9 \cdot \gamma_{\mathrm{M}}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{Ed}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{E}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod }$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod} \rightarrow \mathrm{Rk}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning cids. Projects must only be calculated by outhorised persons.

Gurotec

TOPDUO ROOFING SCREW

THE WOOD-CONSTRUCTION SCREW FOR ALL OVER-RAFTER INSULATION SYSTEMS

ADVANTAGES

Double thread allows the fastening of compression-resistant and non-compression-resistant insulation materials

- Due to the high pull-out resistance, the screw is
universally suitable for many applications in timber construction
Resistant to mechanical stress
- No hammering of the screws when screwing-in due to TX-Drive

ADVANTAGES OF THE SCREW TIP

DESCRIPTION

The Topduo roofing screw can be used to fasten both compression-resistant and non-compression-resistant above-rafter insulation. The high pull-out resistance in both connecting timbers also makes the TopDuo roofing screw suitable for many other applications in timber construction. The screw has a double thread and is available with a flanged buttonhead and cylinder head.

Topduo flanged-button head for fastening insulation material.

Topduo roofing screw \% C E	Art. no.	Dimensions [mm]	Length [mm] ${ }^{\text {a }}$	Drive	PU
Flanged button-head, special coated	945870	8,0×165	60/80	TX40 -	50
	94587	$8,0 \times 195$	60/100	TX40 -	50
(then	945813	8,0×225	60/100	TX40 -	50
	945814	8,0×235	60/100	TX40 -	50
	945815	8,0×255	60/100	TX40 -	50
ADVANTAGES/PROPERTIES	945816	8,0x275	60/100	TX40	50
Can also be used for many other applications in timber-frame construction thanks to its high extraction resistance	945817	8,0×302	60/100	TX40	50
	945818	8,0×335	60/100	TX40	50
	945819	8,0x365	60/100	TX40 -	50
	945820	8,0× 397	60/100	TX40 -	50
	945821	8,0 435	60/100	TX40	50
	945843	8,0x 472	60/100	TX40 -	50
	a) Under-head thread/drive thread				

Topduo roofing screw	Art. no.	Dimensions [mm]	Length [mm] ${ }^{\text {a }}$	Drive	PU
Cylinder head, special coated	945956	$8,0 \times 225$	60/100	TX40	50
	945965	8,0×235	60/100	TX40 -	50
-	945957	$8,0 \times 255$	60/100	TX40	50
	945958	8,0 $\times 275$	60/100	TX40 -	50
ADVANTAGES / PROPERTIES	945960	8,0×302	60/100	TX40	50
	945961	8,0×335	60/100	TX40	50
Can also be used for many other applications in timber-frame construction thanks to its high extraction resistance	945962	8,0×365	60/100	TX40 -	50
	94596	8,0×397	60/100	TX40	50
	945964	$8,0 \times 435$	60/100	TX40 ${ }^{\circ}$	50
	a) Under-head thread/drive thread				

Gurotec

Fastening options

65° screw connection

[^2]
CALCULATING QUANTITIES FOR TOPDUO ROOFING SCREW STATICALLY NON.PRESSURE-RESISTANT INSULATING MATERIALS AT $\sigma 10 \%$ < 50 KPA

Design sample for specified assumptions, project-related design may yield significantly more favourable results

Number of Topduo screws per m²															
	Insulation thickness	40	60	80	100	120	140	140	160	180	200	220	240	260	280
Boarding thit	hickness Oon rafters)	24	24	24	24	24	-	24	24	24	24	24	24	24	24
Dimensions Topduo Flanged button-head acc. (ylinder-headd		$8 \times 165^{\text {b }}$	$8 \times 195^{\text {b }}$	8×225	8×235	8×255	8×275	8×302	8×335	8×335	8×365	8×365	8×397	8×435	8×435
		[mm]													
	$0^{\circ} \leq D W \leq 10^{\circ}$	2,20	2,20	2,38	2,38	2,38	2,38	2,38	2,29	2,29	2,48	3,01	3,57	4,08	4,76
	$10^{\circ}<$ DN $\leq 25^{\circ}$	2,38	2,38	2,60	2,60	2,60	2,60	2,60	2,60	2,60	3,17	3,81	4,40	e)	e)
	$25^{\circ}<\mathrm{DN} \leq 40^{\circ}$	2,72	2,72	3,01	3,1	3,01	3,01	3,01	3,01	3,01	3,57	4,40	5,19	e)	e)
	$40^{\circ}<\mathrm{DN} \leq 60^{\circ}$	2,86	3,01	3,17	3,17	3,36	3,36	3,36	3,36	3,36	3,57	4,40	5,19	e)	e)
$\begin{aligned} & \text { Snow lood zone 3t) } \\ & \text { Wind zone 29) } \\ & \text { Alfitude WV } \\ & \leq 600 \mathrm{~m} \end{aligned}$	$0^{\circ} \leq 0 W \leq 10^{\circ}$	1,79	1,79	1,97	2,04	2,04	2,04	2,04	2,12	2,60	3,81	4,40	5,19	e)	e)
	$10^{\circ}<\mathrm{DN} \leq 25^{\circ}$	2,29	2,29	2,48	2,60	2,60	2,60	2,60	2,72	3,36	4,76	e)	e)	e)	e)
	$25^{\circ}<\mathrm{DW} \leq 40^{\circ}$	2,38	2,48	2,72	2,72	2,72	2,86	2,86	2,86	3,57	5,19	e)	e)	e)	e)
	$40^{\circ}<\mathrm{DN} \leq 60^{\circ}$	2,60	2,60	2,86	2,86	2,86	2,86	2,86	3,01	3,57	5,19	e)	e)	e)	e)

a) Quantity always refers to the less favourable valve from Topduo Flanged button-head and Cylinder-head
b) Topduo Flanged button-head only, () Includes snow lood zones 1,2 and 2^{*}, d) Includes all wind zones aparf from North Sea islands
e) Use of our project assessment service is recommended. The design examples listed here represent unfavourable, i.e. statically safe, instances.
f) Includes snow load zones 1,2 and 3, g) Includes wind zones 1 and 2 (inland)

Further assumptions:
Design with ECS design software in accordance with EA- $11 / 0024$; screw-in angle 65°; gabled roof; ridge height above ground max. 18 m ; gross density insulation $1,50 \mathrm{kN} / \mathrm{m}^{3}$; rafters $\mathrm{C} 248 / \geq 12 \mathrm{~cm}$; counter batten $\mathrm{C} 244 / 6 \mathrm{~cm}$; rafter centre distance $0,70 \mathrm{~m}$; roofing dead weight $0,55 \mathrm{kN} / \mathrm{m}^{2}$; snow guard available; quantity calculation regarding wind pressure after the most unfavourable roof area.
All listed values should be viewed as subject to the assumptions that have been made. They therefore represent example calculations and are subject to typographical and printing errors.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

CALCULATING QUANTITIES FOR TOPDUO ROOFING SCREW
 STATICALLY PRESSURE-RESISTANT INSULATING MATERIALS AT $\sigma_{10} \% \geq 50$ KPA

Design sample for specified assumptions, project-related design may yield significantly more favourable results

Number of Topduo screws per m^{2}

	Insulation thickness	40	60	80	100	120	140	160	180	200	220	240	260	280	300
Boarding thi	hickness (on rafters)	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Dimensions Topduo Flanged button-heed acc. (ylinder-headd ${ }^{(0)}$		$8 \times 195^{\text {b }}$	8×225	8×235	8×255	8×275	8×302	8×335	8×335	8×365	8×365	8×397	8×435	8×435	$8 \times 472^{\text {b }}$
		[mm]													
Snow lood zone 2 ${ }^{*}$ (), Wind zone $4^{\text {d }}$ Altitude NN $\leq 285 \mathrm{~m}$	$0^{\circ} \leq \mathrm{DN} \leq 10^{\circ}$	1,96	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,12	1,80	2,40	2,32
	$10^{\circ}<\mathrm{DN} \leq 25^{\circ}$	2,11	2,05	1,97	1,94	1,97	1,90	1,85	2,14	2,01	2,74	2,57	2,38	3,23	2,93
	$25^{\circ}<\mathrm{DN} \leq 40^{\circ}$	2,48	2,41	2,28	2,35	2,41	2,35	2,18	2,67	2,49	3,48	3,22	2,96	4,42	3,79
	$40^{\circ}<\mathrm{DN} \leq 60^{\circ}$	2,31	2,30	2,56	2,65	2,74	2,65	2,42	2,9	2,74	4,00	3,70	3,48	4,87	4,47
Snow load zone $3^{\text {(t) }}$ Wind zone ${ }^{\text {g }}$) Altitude NN $\leq 400 \mathrm{~m}$	$0^{\circ} \leq \mathrm{DN} \leq 10^{\circ}$	2,65	2,54	2,39	2,34	2,26	2,23	2,34	2,34	2,16	2,46	2,32	2,19	2,86	2,65
	$10^{\circ}<\mathrm{DN} \leq 25^{\circ}$	4,04	3,81	3,55	3,33	3,33	3,15	3,15	2,99	2,99	3,66	3,37	3,06	4,37	3,74
	$25^{\circ}<\mathrm{DN} \leq 40^{\circ}$	4,46	4,16	3,84	3,58	3,58	3,58	3,37	3,37	3,37	4,67	4,20	3,92	e)	e)
	$40^{\circ}<\mathrm{DN} \leq 60^{\circ}$	3,55	3,26	3,26	3,26	3,44	3,26	2,96	3,66	3,44	e)	4,67	4,27	e)	e)

a) Quantity always refers to the less favourable valve from Topduo Flanged button-head and Cylinder-head
b) Topduo Flanged button-head only, () Includes snow load zones 1,2 and 2^{*} each with snow guard, d) Includes all wind zones aparif from North Sea islands
e) Use of our project assessment service is recommended. The design examples listed here represent unfavourabbe, i.e. statically safe, instances.
f) Includes snow load zones 1,2 and 3 , g) Includes wind zones 1 and 2 (inland)

Further assumptions:
Design with ECS design software in accordance with EAA-11/0024; screw-in angle roof thruss screw $65^{\circ} /$ wind pressure screw 90°; gabled roof; ridge height above ground max. 18 m ; gross density insulation $1,50 \mathrm{kN} / \mathrm{m}^{3}$; rafters $\mathrm{C} 248 / \geq 12 \mathrm{~cm}$; counter batten C 24
$4 / 6 \mathrm{~cm} ;$ rafter centre distance $0,70 \mathrm{~m}$; roofing dead weight $0,55 \mathrm{kN} / \mathrm{m}^{2}$; snow guard available; quantity calculation with respect to wind pressure after the most unfavourable roof area.
All listed values should be viewed as subject to the assumptions that have been made. They therefore represent example calculations and are subject to typographical and printing errors.
Please note: These are planning aids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by outhorised
persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of sability. We will be happy to refer you to someone.

EuroTec calculation service

On-rafter insulation according to ETA-1 1/0024

by phone 02331 6245-444 • by fax 02331 6245-200 • by e-mail technik@eurotec.team

Please contact our technical department or use the free calculation services in the service section of our website.
Contact
Trader:

Contact person:
e-mail: \qquad

Project: \qquad

Project details

[^3]

Further products

Lifing anchor und ball supporting bolt	$136-147$
Ideefix	$148-155$
SonoTec sond insulation cork	$156-167$
Bolt anchor	$168-171$
Silent EPDM decoupling profile	$172-173$
Ecktec	$174-175$

Gurotec

LIFTING ANCHOR UND BALL SUPPORTING BOLT

FOR THE TRANSPORT OF PREFABRICATED WALL MODULES

ADVANTAGES

- Easy assembly
- Reusable corpus
- Can be used in solid structural timber and cross-laminated timber
- Especially made for transporting large loads
- 360° rotation of the load is possible

DESCRIPTION

The Lifting anchor is specifically designed for use with a ball supporting bolt. The lifting anchor can be used to transport prefabricated wall modules. The fact that it is sed with screws means the anchor can be used several times. 8 screws are included in delivery.

INSTRUCTIONS FOR USE

The product only works in combination with the ball supporting bolt (Ø: 20 $\mathrm{mm}, \mathrm{l}: 50 \mathrm{~mm}$) provided for this purpose.
The specifications of the product data sheet must be observed!
Please consult with our technical department and download the product data sheet from our website www.eurotec.team runter.

Please note! This product is subject to important conditions! Please observe the instructions of use. To be able to ensure the safety of transport, the screws must be replaced after use.

Self-alignment of the leg in the direction of force

ONLY TO BE CARRIED OUT BY QUALIFIED PROFESSIONALS!
Minimum width of the material:
120 mm
Minimum thickness of the material: 60 mm
Bis 80 mm material thickness: Through bore
From $80 \mathrm{~mm}+$:
Blind hole / pocket

Art. no.	Name	Dimensions [mm] ${ }^{\text {a/ }}$	Material	PU
94892	lifiting anchor	60×40	S/235	4
a) Height X Dimeter				
*Delivery incl. screws				

Art. no.	Name	Dimensions $[\mathrm{mm}]^{00}$	Material	F1 [kN]	F2 [kN]	F3 [kN]	PU
944893	Ball supporing bolt	50×20	5 S235	10	8,5	6,5	1
a) Heightx Diameter							

Gurotec

TRANSPORTATION OF SMALLER ELEMENTS

DESCRIPTION LIFTING ANCHOR MINI

The new Lifting anchor Mini is particularly suitable for transporting smaller loads, such as beam girders or supports. Since the inner diameter has been reduced from $\varnothing 20 \mathrm{~mm}$ (Liffing anchor) to $\varnothing 16 \mathrm{~mm}$ (Lifting anchor Mini), there is also a new smaller ball supporting bolt. A special feature of the Lifting anchor Mini is a stop on the upper edge, which simplifies installation in the case of a through hole.

Art. no.	Name	Dimensions $[\mathrm{mm}]^{00}$	Material	PU
944901	Litfing Anchor Mini	49×45	S235JR	4

*Incl. 8 TX25 fully threaded screws TX25 6,0 x 60

Art. no.	Name	Dimensions [mm] ${ }^{\text {a) }}$	Material	Fl [kN]	F2 [kN]	F3 [kN]	PU
944893	Ball supporting bolt	50×20	S/235	10	8,5	6,5	1
a) Height x Diameter							

Gurotec

LIFTING ANCHOR

TECHNICAL INFORMATION

HORIZONTAL WALL OR BEAM: SET UPRIGHT, THEN LIFT

CII- wall or beam			
Connection in the	Connetor	Stop bracket β	Total weight [kg] wih 2 strunds
End grain area	Lifing anchor $840 \mathrm{~mm}+8 \times \mathrm{VS5} 6 \times 60$	30°	444
		45°	528
		60°	569
		75°	588
		β	wilh nstrous
		90°	nx297

Note
The tables illustrate the 'Setting upright and subsequently lifting a horizontal wall or horizontal beam' load case (lifting from a horizontal position leading to vertical suspension). The connectors are to be screwed flush, as well as at right angles to the surfaces of the narrow sides and side or end grain surfaces, into the centre plane of the components.

VERTICAL WALL OR BEAM: LIFT

CLI - wall or beam			
Connection in the	Connector	Stop bracket β	Total weight [kg] with 2 strands
		30°	601
		45°	886
		60°	1135
Narrow surface	Lifting Anchor $040 \mathrm{~mm}+8 \times \mathrm{V} 556 \times 60$	75°	1311
		β	bein Ströngen
		90°	nx 688

Note

The tables illustrate an example of "Liffing a standing wall or beam". (liffing from the horizontal to vertical suspension). The table values are only valid for lifting or assembly states.

CEILING LYING: LIFTING

(TABLE ON THE NEXT PAGE)

Please note: Verity the assumptions made. The stated values, and type and number of joining devices are based on preiminaryy measurements. Projects are to be dimensioned exclusively by outhorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

Notes

The tables illustrates an example of "lifting of horizontal ceiling elements". (Liffing from the horizontal to vertical suspension). The connectors must be screwed in flush with the surface, plus perpendicular to the component surface.

Warning!

Ball supporting bolts are designed for lifting and holding individual loads (not people!). In addition, they are not suitable for continuous load rotation. Contamination (e.g. grinding sludge, oil and emulsion deposits, dust, etc.) can impair the function of ball supporting bolts.

Damaged ball supporting bolts can put people's lives at risk. Before each use, ball supporting bolts must be inspected for visible defects (e.g. deformations, fractures, cracks, damage, missing balls, corrosion, function of the unlocking mechanism).

Damaged ball supporting bolts must be mitdrawn from further use.

Handling and loading

Press the button (A) to release the balls. The balls are locked again by releasing the button (A).
Please note: The button (A) is locked when the spring force has caused it to spring back to its original position. Do not press the button when loaded!
The load values F1 / F2 / F3 (see page 2) apply to liffing in a steel receptacle and x min.
$=1.5 \mathrm{~mm}$

Maintenance

Ball supporting bolts must be subjected to a safety inspection by a competent person at least once a year.

Visual inspection

Deformations, fractures, cracks, missing / damaged balls, corrosion, screw connection damage on the shackle.

Functional test

The balls' locking and unlocking mechanism must close automatically by spring force. Full shackle mobility is guaranteed.

${ }_{1}$	1	d_{2}	d_{3}	d_{4}	in. 1_{2}		3	4	,	1	ヶ	8	xmin	** xmax	nox. OHII	$F_{1} \mathrm{lkH}$	$\mathrm{F}_{2} \mathrm{ll}^{\text {c/ }}$	\|il F_{3}	${ }_{3} \mathrm{kl\mid}$
	no ${ }^{50}$	25		${ }^{230}$	19,		${ }_{3}{ }^{5}$	520	236	${ }_{3}$	56	140	15	${ }^{5}$	n, 0	100	is	${ }_{6}$	

Original EC conformity mark

The product complies with the regulations set down in the EC Directive 2006/42/EC
Make: Ball supporting bolt
Type: EH 22350
Applied standards: DIN EN 13155

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are hased on preliminary meassurements. Projects are to be dimensioned exclusively by authorised
persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

LIFTING ANCHOR MIN|

TECHNICAL INFORMATION

HORIZONTAL WALL OR BEAM: SET UPRIGHT, THEN LIFT

CII- Wall or beam			
Connection in the	Connector	Stop bracket	Total weight [kg]
		β	with 2 strands
End grain area	Lifing anchor mini $940 \mathrm{~mm}+8 \times \mathrm{VSS} 6 \times 60$	30°	248
		45°	295
		60°	318
		75°	378
		β	wilh nstrons
		90°	nx166

Note

The tables illustrate the 'Setting upright and subsequently lifting a horizontal wall or horizontal beam load case llifting from a horizontal position leading to vertical suspension). The connectors are to be screwed flush, as well as at right angles to the surfaces of the narrow sides and side or end grain surfaces, into the centre plane of the components.

VERTICAL WALL OR BEAM: LIFT

CEILING LYING: LIFTING

(TABLE ON THE NEXT PAGE)

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec

CLI - Ceiling				
Connection in the	Connectors	Stop bracket	Ground plan bracket	Total weight [kg]
		β	δ	with 4 strands
Side area	Liffing anchor + $8 \times$ VSS 6×60	30°	5°	714
			15°	665
			25°	595
			35°	529
			45°	475
			60°	419
			75°	389
		45°	5°	1161
			15°	1091
			25°	986
			35°	884
			45°	799
			60°	710
			75°	645
		60°	5°	1727
			15°	1648
			25°	1524
			35°	1394
			45°	1281
			60°	1155
			75°	1061
		75°	$5{ }^{\circ}$	2385
			15°	2339
			25°	2257
			35°	2160
			45°	2063
			60°	1943
			75°	1841
		β	δ	with 2 strands
		30°	0°	721
			90°	189
		45°	0°	17
			90°	322
		60°	0°	1738
			90°	530
		75°	0°	2392
			90°	920
		β	б	wihn strands
		90°	0°	nx688

Note

The tables illustrate an example of "Lifting of horizontal ceiling elements". (Liffing from the horizontal to vertical suspension). The connectors must be screwed in flush with the surface, plus perpendicular to the component surface.

OPERATING INSTRUCTIONS FOR THE BALL SUPPORTING BOLT

Warning!

Ball supporting bolts are designed for lifting and holding individual loads (not people!). In addition, they are not suitable for continuous load rotation. Contamination (e.g. grinding sludge, oil and emulsion deposits, dust, etc.) can impair the function of ball supporting bolts.

Damaged ball supporting bolts can put people's lives at risk. Before each use, ball supporting bolts must be inspected for visible defects (e.g. deformations, fractures, cracks, damage, missing balls, corrosion, function of the unlocking mechanism).

Damaged ball supporting bolts must be withdrawn from further use.

Handling and loading

Press the button (A) to release the balls. The balls are locked again by releasing the button (A).
Please note: The button (A) is locked when the spring force has caused it to spring back to its original position. Do not press the button when loaded!
The load values F1 / F2 / F3 (see page 2) apply to liffing in a steel receptacle and x min. $=1.5 \mathrm{~mm}$

Maintenance

Ball supporting bolts must be subjected to a safety inspection by a competent person at least once a year.

Visual inspection

Deformations, fractures, cracks, missing / damaged balls, corrosion, screw connection damage on the shackle.

Functional test

The balls' locking and unlocking mechanism must close automatically by spring force.
Full shackle mobility is guaranteed.

d_{1}	1	d_{2}	d_{3}	$d_{4} \mathrm{~min}$.	I_{2}	13	14	5	16	17	18	X min.*	x max.*	DHII	$F_{1} \mathrm{kN}{ }^{*}$	$\mathrm{F}_{2} \mathrm{kN} *$	$\mathrm{F}_{3} \mathrm{kN}{ }^{*}$
20,0	50	24,50	30,0	25,00	19,70	36,5	52,0	32,6	36	56	114,0	1,5	25	20,0	10,0	8,5	6,5
*with five-fold protection against breakage																	

*with five-fold protection against breakage

Original EC conformity mark
The product complies with the regulations set down in the EC Directive 2006/42/EC
Make: Ball supporting bolt
Type: EH 22350
Applied standards: DIN EN 13155

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary meassurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Sode. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Eurotec

IDEEFIX

HIDDEN WOOD CONNECTOR

ADVANTAGES

- High load absorption for tensile and transverse loads
- Adjustable tension/detachable
- Universal application
- Low wood-weakening effect
- For single- or multiple-row serial connections
- High extraction resistance

- Strong connection

- Maximization of load capacity
- Time and cost saving alternative
- Non-visible connections
- According to approval/ETA no predrilling for screws required (from screw lengths $>245 \mathrm{~mm}$ recommended

INSTRUCTIONS FOR USE

The wood is predrilled for the IdeeFix. Then the IdeeFix is first inserted into the drill hole without screws. Then, thanks to its low splitting effect, the screws can be inserted without further predrilling. In the middle of the IdeeFix is a thread into which another screw can be inserted.

CLT system angle with IdeeFix

Gurotec

IDEEFIX 30/40/50
TECHNICAL INFORMATION

Ideefix			Timber Dimensions Min. cross section post		Tension connection with anti-twist element		Mortise joint with anti--twist element		Tensile load with threaded bolt		
	ns				Drilling depth for post	Drilling depth for cross-piece	Drilling depth for post	Drilling depth for cross-piece	Perm. Values	Char. Values	Screw pattern
d_{c}	a_{g}	V_{c}	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	$\mathrm{Nze}_{\text {ze }}$ [kN$]$	$\mathrm{Rl}_{1,1,1}[\mathrm{kN}]$	pc.
30	M12	3	80	80	27	.	20	7	7,62	17,33	
40	M16	5	120	120	35	.	25	10	12,65	28,79	0
50	M20	5	160	160	45	-	30	15	20,81	47,35	
30	M12	3	60	80	27	-	20	7	5,11	13,00	
40	M16	5	80	120	35	-	25	10	9,49	21,59	6
50	M20	5	120	160	45	-	30	15	15,61	35,51	
30	M12	3	40	80	27	-	20	7	3,81	8,67	
40	M16	5	60	120	35	-	25	10	6,33	14,39	\%
50	M20	5	80	160	45	-	30	15	10,41	23,67	
30	M12	3	60	60	27	-	20	7	3,81	8,67	
40	M16	5	80	80	35	\cdot	25	10	6,33	14,39	8)
50	M20	5	120	120	45	.	30	15	10,41	23,67	

dc is the diameter and the total height of the connector
ag_{g} is the metric connection thread of the connector
vc is the height of the integrated anti-wwist system
Fully threaded screw, GoFix ${ }^{\mathbb{}}$ FK IF $305,0 \times 40 \mathrm{~mm}$ - IF $406,0 \times 60 \mathrm{~mm}$ - IF $508,0 \times 90 \mathrm{~mm}$
The connection is drawn together using a threaded rod or construction screw with a DIN 440 R washer
Tension connection as a mortise joint with simultaneous absorption of transverse forces
Rk characterisicic value calculated according to DIN $1052: 2004-08$ Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible load $\mathrm{R}, \mathrm{k} \times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}: 1,4$. Factor 1,4 average load safery factor
Please note: The stated values are planning aids. Projects must only be calculated by authorised persons.

MAIN-SECONDARY BEAM

Ideefix			Timber Dimensions		Timber Dimensions		Main-secondary beam with anti-twist element		Load-bearing capacity with threaded bolt		
Dimensions [mm]			Min. cross section of secondary beam		Min. cross section of main beam		Drilling depth for SB	Drilling depth for MB	Perm. Values	Char. Values	Screw pattern
$d^{\text {d }}$	a_{g}	v_{c}	w [mm]	$\mathrm{h}[\mathrm{mm}]$	w [mm]	$\mathrm{h}[\mathrm{mm}]$	[mm]	[mm]	Vze. [kN]	R23,k[kN]	pc.
30	M12	3	80	80	80	80	20	7	4,32	8,94	\checkmark
40	M16	5	120	120	120	120	25	10	6,98	14,66	co
50	M20	5	160	160	160	160	30	15	10,88	21,09	
30	M12	3	60	80	60	80	20	7	3,50	1,97	\square
40	M16	5	80	120	80	120	25	10	5,63	12,80	0
50	M20	5	120	160	120	160	30	15	8,65	19,68	
30	M12	3	40	80	40	80	20	7	3,50	7,97	
40	M16	5	60	120	60	120	25	10	5,63	12,80	(8)
50	M20	5	80	160	80	160	30	15	8,65	19,68	
30	M12	3	60	60	60	60	20	7	3,50	1,97	\square
40	M16	5	80	80	80	80	25	10	5,63	12,80	2)
50	M20	5	120	120	120	120	30	15	8,65	19,68	

d_{c} is the diameter and the total height of the connector
ag is the metric connection thread of the connector
Vc is the height of the integrated anti--wist system
System - Fully threaded screw, GoFix ${ }^{\text {B }}$ FK IF $305,0 \times 40 \mathrm{~mm}$ - IF $406,0 \times 60 \mathrm{~mm}$ - IF $508,0 \times 90 \mathrm{~mm}$
The connection is drown together using a threaded rod or construction screw with a DIN 440 R washer
MB-SB connection as a mortise joint with simultaneous absorption of tensile forces
Rk characterisicic value calculated according to DIN $1052: 2004-08$ Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible load $\mathrm{R}, \mathrm{k} \times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}: 1,4$. Factor 1,4 average lood safery factor
Please note: The stated values are planning aids. Projects must only be calculated by authorised persons.

Gurotec

MAIN-SECONDARY BEAM, DOUBLE-SIDED CONNECTION, WITH FIXING SCREW

IdeeFix			Timber Dimensions Min. cross section of secondary beam		TimberDimensionsMin. cross sectionof main beam		Main-secondary beam with anti-twist element		Load-bearing capacity with threaded bolt				
	ons				Drilling depth for SB	Diilling depth for MB	Perm. Values	Char. Values	Screw pattern				
$d^{\text {c }}$	ag_{g}	V_{C}	w [mm]	h [mm]			w [mm]	h [mm]	[mm]	[mm]	$V_{\text {ze. }}$ [$[\mathrm{kN}]$	R23,k[kN]	p.
30	M12	3	80	80	80	80	20	10	2,34	5,32			
40	M16	5	120	120	120	120	25	15	3,60	8,19			
50	M20	5	160	160	160	160	30	20	5,03	11,44			
30	M12	3	60	80	60	80	20	10	2,34	5,32	I		
40	M16	5	80	120	80	120	25	15	3,60	8,19			
50	M20	5	120	160	120	160	30	20	5,03	11,44			
30	M12	3	40	80	40	80	20	10	2,34	5,32			
40	M16	5	60	120	60	120	25	15	3,60	8,19	(8)		
50	M20	5	80	160	80	160	30	20	5,03	11,44			
30	M12	3	60	60	60	60	20	10	2,34	5,32			
40	M16	5	80	80	80	80	25	15	3,60	8,19	(8)		
50	M20	5	120	120	120	120	30	20	5,03	11,44			

de is the diameter and the total height of the connector
ag is the metric connection thread of the connector
Vcis the height of the integrated anti-wwist system
System - Fully threaded screw, Gofix ${ }^{\circledR}$ FK IF $305,0 \times 40 \mathrm{~mm}$ - IF $406,0 \times 60 \mathrm{~mm}$ - IF $508,0 \times 90 \mathrm{~mm}$
Position retention using Gofix ${ }^{\text {® }}$ SK IF $305,0 \times 100 \mathrm{~mm}$, IF $406,0 \times 140 \mathrm{~mm}$, IF $508,0 \times 160 \mathrm{~mm}$
MB-SB connection as mortise joint for double-sided connection of secondary beam
Rk characteristic value calculated according to DIN $1052: 2004-08$ Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible load $\mathrm{R}, \mathrm{k} \times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}: 1,4$. Favtor 1,4 average lood safety factor
Please note: The stated values are planning oids. Projects must only be calculated by authorised persons.

MAIN-SECONDARY BEAM MUUTIPLE CONNECTION, SINGLE-ROW

Ideefix			Timber Dimensions Min. cross section of secondary beam		Edge and centre distance		Main-secondary beam Multiple connection		Lood-bearing capacity Single-row		θ
	ns [$\begin{aligned} & \text { Edge } \\ & \text { distance } \end{aligned}$	Centre distance	Drilling depth for SB	Drilling depth for MB	Perm. Values	Char. Values	Number of Connectors
d_{c}	ag_{g}	V_{c}	w [mm]	h [mm]	[mm]	[mm]	[mm]	[mm]	$V_{z e}$. $[\mathrm{kN}]$	R23,k[kN]	pc.
30	M12	3	80	80	50	50	20	7	4,32	8,94	1
40	M16	5	120	120	60	60	25	10	6,98	14,66	1
50	M20	5	160	160	80	80	30	15	10,88	21,09	1
30	M12	3	80	150	50	50	20	10	8,64	17,88	2
40	M16	5	120	180	60	60	25	15	13,96	29,32	2
50	M20	5	160	240	80	80	30	20	21,76	42,18	2
30	M12	3	80	200	50	50	20	10	12,96	26,82	3
40	M16	5	120	240	60	60	25	15	20,94	43,98	3
50	M20	5	160	320	80	80	30	20	32,64	63,27	3
30	M12	3	80	250	50	50	20	10	17,28	35,76	4
40	M16	5	120	300	60	60	25	15	27,92	58,64	4
50	M20	5	160	400	80	80	30	20	43,52	84,36	4
30	M12	3	80	300	50	50	20	10	21,60	44,70	5
40	M16	5	120	360	60	60	25	15	34,90	73,30	5
50	M20	5	160	480	80	80	30	20	54,40	105,45	5
30	M12	3	80	350	50	50	20	10	25,92	53,64	6
40	116	5	120	420	60	60	25	15	41,88	87,96	6
50	M20	5	160	560	80	80	30	20	65,28	126,54	6
30	M12	3	80	400	50	50	20	10	30,24	62,58	7
40	M16	5	120	480	60	60	25	15	48,86	102,62	7
50	M20	5	160	640	80	80	30	20	76,16	117,63	7
30	M12	3	80	450	50	50	20	10	34,56	71,52	8
40	M16	5	120	540	60	60	25	15	55,84	117,28	8
50	M20	5	160	720	80	80	30	20	87,04	168,72	8

de is the diameter and the total height of the connector

ag is the metric connection thread of the connector
V c is the height of the integrated anti-wwist system - Fully threaded screw, GoFix ${ }^{(2)}$ FK
IF $305,0 \times 40 \mathrm{~mm} \cdot$ IF $406,0 \times 60 \mathrm{~mm} \cdot$ IF $508,0 \times 90 \mathrm{~mm}$
The connection is drawn together using a threaded rod or constructionscrew with a DIN 440 R washer
MB-SB connection as a mortise joint with simultaneous absorption of tensile forces
Rk characterisic value calculated according to DNN $1052: 2004-08$ Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible lood $\mathrm{R}_{1} \mathrm{k} \times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}: 1,4$. Fovtor 1,4 average load safety factor
Please note: The stated values are planning aids. Projects must only be calculated by authorised persons.

Gurotec

MAIN-SECONDARY BEAM MULTIPLE CONNECTION, DOUBLE-ROW

IdeeFix			Timber Dimensions Min. cross section of secondary beam		Edge and centre distance		Main-secondary beam Multiple connection		Load-bearing capacity Single-row		$\theta 0$
	sions [Edge distance	Centre distance	Drilling depth for SB	Drilling depth for MB	Perm. Values	Char. Values	Number of connectors
d_{c}	ag_{g}	V_{c}	w [mm]	h [mm]	[mm]	[mm]	[mm]	[mm]	$V_{z e}$. [kN]	R23,k[kN]	pc.
30	M12	3	150	80	50	50	20	10	8,64	17,88	2
40	M16	5	180	120	60	60	25	15	13,6	29,32	2
50	M20	5	240	160	80	80	30	20	21,76	42,18	2
30	M12	3	150	150	50	50	20	10	17,28	35,76	4
40	M16	5	180	180	60	60	25	15	27,92	58,64	4
50	M20	5	240	240	80	80	30	20	43,52	84,36	4
30	M12	3	150	200	50	50	20	10	25,92	53,64	6
40	M16	5	180	240	60	60	25	15	41,88	87,96	6
50	M20	5	240	320	80	80	30	20	65,28	126,54	6
30	M12	3	150	250	50	50	20	10	34,56	71,52	8
40	M16	5	180	300	60	60	25	15	55,84	117,28	8
50	M20	5	240	400	80	80	30	20	87,04	168,72	8

30	M12	3	150	300	50	50	20	10	43,20	89,40
40	M16	5	180	360	60	60	25	15	69,80	146,60
50	M20	5	240	480	80	80	30	20	108,80	210,90
30	M12	3	150	350	50	50	20	10	51,84	1007,88
40	M16	5	180	420	60	60	25	15	83,76	175,92
50	M20	5	240	560	80	80	30	20	130,56	253,08

30	M12	3	150	400	50	50	20	10	60,48	125,16	14
40	M16	5	180	480	60	60	25	15	97,72	205,24	14
50	M20	5	240	640	80	80	30	20	152,32	295,26	14
30	M12	3	150	450	50	50	20	10	69,12	143,04	16
40	M16	5	180	540	60	60	25	15	111,68	234,56	16
50	M20	5	240	720	80	80	30	20	174,08	337,44	16

de_{c} is the diameter and the total height of the connector

ag is the metric connection thread of the connector
vcis the height of the integrated anti--wwiss system
Fully threaded screw, GoFix ${ }^{\circledR}$ FK IF $305,0 \times 40 \mathrm{~mm}$ - IF $406,0 \times 60 \mathrm{~mm}$ - IF $508,0 \times 90 \mathrm{~mm}$
The connection is drown together using a threaded rod or constructionscrew with a DIN 440 R washer
MB-SB connection as a mortise joint with simultaneous absorption of tensile forces
Rk characteristic value calculated according to DIN $1052: 2004-08$ Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible lood R,k $\times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}$: 1,4 . Factor 1,4 average load safety factor
Please note: The stated values are planning cids. Projects must only be calculated by cuthorised persons.

SONOTEC SOUND INSULATION CORK

THE PERFECT SOLUTION FOR SOUND INSULATION

ADVANTAGES

- Sustainable material
- High load bearing capacity
- Hidden installation
- Easy to use

- Impermeable to water and gas due to component-specific requirements

MATERIAL

The Sonotec sound insulation cork is a combination of the components cork and natural rubber. This product is suitable for the application of vibration damping where very high isolation values are required and can be used as invisible insulators (pads/strips) with a low resonant frequency and medium to low load.

LOAD ABSORPTION

Different loads have to be absorbed when decoupling the timber vertical truss from the concrete. These are located in the $0,1 \mathrm{~N} / \mathrm{mm}^{2}-3 \mathrm{~N} / \mathrm{mm}^{2}$ stat. permanent load range. A timber beam (C24 softwood) may only be loaded up to $2,5 \mathrm{~N} / \mathrm{mm}^{2}$ (characteristic) perpendicular to the grain. Our products cover load cases from $0,1 \mathrm{~N} / \mathrm{mm}^{2}-3 \mathrm{~N} / \mathrm{mm}^{2}$ ab. The cork can thus be used both in lightweight and solid construction with cross-laminated fimber (CLT).

NOISE REDUCTION

The SonoTec sound insulation cork can reduce noise by up to 40 dB .

Gurotec

SONOTEC SOUND INSULATION CORK

THE PERFECT SOLUTION FOR SOUND INSULATION

Art. no.	Name	Dimensions [mm]	Material thickness [mm]	PU
945305	skO2	80×1100	6	20
945306	SK02	100×1100	6	20

Art. no.	Name	Dimensions [mm]	Material thickness [mm]	PU
945507	SK03	80×1100	6	20
945308	SK03	100×1100	6	20

SonoTec sound insulation cork	Art. no.	Name	Dimensions [mm]	Material thickness [mm]	PU
Material: SK04	945309	SKO4	80×1100	6	20
	945310	SKO4	100×1100	6	20

SONOTEC SOUND INSULATION CORK FOR VARIOUS APPLICATIONS

THE PERFECT SOLUTION FOR SOUND INSULATION

SonoTec for wooden support

SonoTec for invisible ground anchor

SonoTec for tiension rods (leff)
and tie bar simply (right)

Art. no.	Dimensions [mm]	Material	Can be combined with		PU
			Ar-Mr.	Name	
945311	$6 \times 70 \times 230$	SKO4	954088	HH flat shearing ongle	5
945312	$4 \times 80 \times 230$	SKO4	954180	CII system angle	5
945314	$6 \times 100 \times 230$	SKO4	954087	HB lar shearing ongle	5
945313	$6 \times 120 \times 230$	SKO4	954112	Shearing angle 120×230	5

Gurotec

TECHNICAL DATA

	SKO2	SKO3	SKO4
Temperature $\left[\mathrm{C}^{\circ}\right] /$ span width		Load ranges $\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	$-10 /+100$
Density $\left[\mathrm{KG} / \mathrm{m}^{3}\right]$	700	1100	$-10 /+100$
Shore hardness $[$ shore A]	35.50	$45 \cdot 60$	1125
Break rotatio $[\%]$	>200	>300	60.80
Tensile strength $\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	$>2,0$	$>5,0$	>100
$23^{\circ}(/ 70$ h compression $[\%]$	<15	<15	$>6,0$

IDENTIFYING THE CORRECT MATERIAL: AN EXAMPLE

We precisely identify the right material for you. So you still get an idea of how the right material is identified, we have outlined a sample identification process for you below.

First of all, we need the static continuous load that the sound insulation cork is to absorb. This is specified by the architect, structural engineer or stress analyst in question.
One of three different materials is selected depending on the static continuous load:

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by outhorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Static continuous load $\mathrm{N} / \mathrm{mm}^{2}$	Product	Dimensions $[\mathrm{mm}]$	80×1100
$0,10-0,39$	SKO2	Art. no.	
$0,10-0,39$	SKO2	100×1100	945305
$0,40-1,40$	SKO3	80×1100	945306
$0,40-1,40$	SKO3	945307	
$1,50-3,10$	SK04	100×1100	945308
$1,50-3,10$	SKO4	80×1100	945309

In the second step, the material's natural frequency is determined; this depends on the occurring load. The values are approximately taken from the following table.

		6 mm			12 mm		
	$\begin{gathered} \text { Lood } \\ {\left[\mathrm{N} / \mathrm{mm}^{2}\right]} \end{gathered}$	Natural frequency [Hz_{2}]	Deflection [mm]	Modulus of elasticity @10 Hz	Natural frequency [Hz_{2}]	Deflection [mm]	Modulus of elasticity @10 Hz
SK02	0,1	44	0,2	4,0	27	0,5	3,7
	0,2	33	0,5	4,5	19	1,3	4,0
	0,3	27	0,8	5,6	17	1,9	5,1
	0,4	27	1,1	6,9	17	2,6	6,5
SK03	0,5	50	0,2	11,5	31	0,4	10,5
	0,8	38	0,4	15,75	22	1,0	14,0
	1,1	31	0,7	19,5	20	1,6	18,0
	1,5	31	0,9	28,5	20	2,2	27,0
SK04	1,6	58	0,3	18,5	36	0,6	17,0
	2,4	44	0,6	24,5	25	1,3	22,0
	3,2	35	1,0	30,5	23	2,0	28,0
	4,0	35	1,5	43,0	23	2,7	41,0

*Values for SKO2 are based on test results provided by the University of Coimbra / Institute for Research and Technological Development in Construction Sciences. The values for SK03 and SKO4 are generalised. The ongoing tests confirm the values. The results will replace the described values.
As an example, the following sample calculation assumes a load of $0,3 \mathrm{~N} / \mathrm{mm}^{2}$. Our SKO2 material was chosen due to the specified load.
From the above table, we can see that the natural frequency must therefore be 27 Hz . We can illustrate this as follows in the graphs below.

SK02 Natural frequency [Hz]

Gurotec

In the next step, we take a closer look at the interference frequency.
To this end, we look at the graphs below and can thus conclude that the sound reduction in the low frequency range has deteriorated. Low frequencies (basses) can only be isolated by mass. The frequencies to be isolated for building acoustics start in the 80 Hz range, so this is negligible. 80 Hz can be assumed if no interference frequencies are specified.
The sound reduction in dB can be determined in two ways:
1:
Based on an interference frequency of 80 Hz , a sound reduction of approx.
17 dB can be read off the following graph. These values are achieved under ideal conditions (optimum room temperature, room humidity, etc.).

2:
A sound insulation factor can be calculated from the natural frequency identified previously (27 Hz) and the specified interference frequency $(80 \mathrm{~Hz})$.

Sound insulation factor f / fO : Interference frequency / natural frequency $\rightarrow 80 \mathrm{~Hz} / 27 \mathrm{~Hz} \approx 2,96$

The sound reduction can then be read off based on the factor calculated previously. This is 17 dB under ideal conditions.

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by outhorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

In the last step, the material's deflection is identified.
This step is particularly important for the building's designers. The deflection is also identified using the continuous load, and there is a separate graph for each material. For the sample calculation with SKO2 and $0,3 \mathrm{~N} / \mathrm{mm}^{2}$, the following graph shows a deflection of $0,8 \mathrm{~mm} .7$

The graphs shown here are naturally adapted to the factors identified previously.

SK02 Deflection [mm]

Gurotec

For our SK03 and SKO4 materials, the following graphs apply to the deflection:

SK03 Deflection [mm]

Please note: Verity the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance wiht the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

PROPERTIES OF CORK

The cork bark has a honeycomb-shaped cell structure with over 40 million cells per cm^{3}. The cells have a high proportion of an air-like gas mixture, which results in the cork's low weight on the one hand and the high compression capacity and elasticity on the other. The cork can therefore be compressed by up to half it size and can return to its original shape after compression.

Almost half of the cork bark is made up of suberin, a non-combustible biopolymer. The substance lines the individual cells and makes them impermeable to liquids and gases. The bark's structure and thickness protect the cork oak from heat, drying out and infections. This natural protective insulation makes cork oak an ideal insulating and sealing material for technical purposes.

Very good sound and thermal insulation
Impermeable to liquids and gases
Good resistance to fire and high temperatures
High frictional resistance
Compressible and elastic
Good wear resistance
Low weight - floats on water
Hypoallergenic and anti-static - does not absorb dust High flexibility - comfortable and soft

Gurotec

ENVIRONMENT

Cork is one of the most natural and environmentally friendly raw materials in the world. Cork oak is also the only tree that can completely regenerate itseff affer each harvest. The fact that cork can be recycled and revsed in new products makes it an ideal raw material with regard to sustainability.

NATURAL RUBBER

Alongside cork, natural rubber is another natural and renewable raw material. Natural rubber is a rubber-like substance and is extracted from the milky sap (also known as latex) of the rubber tree. The rubber tree grows in the tropics of Africa, South America and Asia.
Natural rubber accounts for around 40% of global rubber production. In contrast, synthetic rubber is made using crude oil as a basis and consumes far more energy during the manufacturing and transport processes.

Natural rubber is made into various products, most of them are used in tyre production. Other applications include seals, binders and mattresses.

SONOTEC ANGULAR DECOUPLER

PERFECT COMPLEMENT TO THE EUROTEC SHEARING ANGLES AND THE CLT SYSTEM ANGLE

ADVANTAGES

- Underlay enables straightforward assembly
- Sustainable material
- Invisible
- High load-bearing capacity
- REACH-compliant

DESCRIPTION

The Eurotec SonoTec Angular Decoupler forms the perfect complement to the Eurotec shearing angles and the CLT System Angle. The underlay is made from SKO4, which is a compound formed from cork and natural rubber. The product is suitable for vibration damping applications in which very high insulation values are required. SonoTec angular decouplers are used as invisible insulators (pads/strips) with a low resonance frequency and a medium-low load.

INSTRUCTIONS FOR USE

SonoTec angular decouplers feature cut-outs for concrete screws, making them suitable for use in concrete. The double layer allows an increase in the separation layer to 12 mm . The specifications for Sonotec SK04 Sound Insulation Cork apply. The material can be screwed through when used in wood. The application must be determined in advance by a structural engineer. No statement can be made regarding noise reduction since this is dependent on the construction.

Art. no.	Dimensions [mm]	Material	Can be combined with		PU
			Aft. no.	Name	
945311	$230 \times 70 \times 6$	SK04	954088	HH flot sheoring ongle	5
945312	$230 \times 80 \times 6$	SK04	954180	CII sysiem ongle	5
945314	$230 \times 100 \times 6$	SKO4	954087	HB lat shearing angle	5
945313	$230 \times 120 \times 6$	SKO4	954112	Shearing ongle 120×230	5

Gurotec

BOLT ANCHOR

FOR FASTENING IN CONCRETE

ADVANTAGES
High load-bearing capacity

- Wide range of applications

Fewer fastening points required due to spreader clip

INSTRUCTIONS FOR USE

The Eurotec Bolt anchor is a force-controlled expanding anchor for pushthrough installations. The galvanized steel bolt anchor is approved for use in non-cracked concrete, the stainless steel A4 bolt anchor for both non-cracked and cracked concrete. Despite the high load-bearing capacity, small axial and edge distances can be maintained. Different anchoring depths and dimensions allow a wide range of applications for connecting attachments of various materials to concrete. The A4 bolt anchor can be used both indoors and outdoors, while the galvanized steel bolt anchor can only be used indoors in dry conditions. Each Bolt anchor is equipped with an expansion clip, which ensures high load-bearing capacity and reduces the number of fastening points required.

Bolt anchor A4	\% \times	Art. no.	Dimensions [mm]	Spanner gap	PU
With washer, stainless steel A4, for cracked concrete and non-cracked concrete		946142	8,0x 75	SW13	100
		946143	8,0 $\times 100$	SW13	100
		946144	10,0 $\times 100$	SW17	50
		946145	10,0 $\times 120$	SW17	50
		946146	10,0 $\times 140$	SW17	50
		946148	12,0x 140	SW19	25

Bolt anchor	Art. no.	Dimensions [mm]	Spanner gap	PU
With washer, electrogalvanised, for non-cracked concrete	946170*	6,0x55	SwIo	200
	946671*	6,0×85	SwIo	100
	946172*	$8,0 \times 50$	SW13	100
	946173	8,0×75	SW13	100
	946174	$8,0 \times 95$	SW13	100
	946175	$8,0 \times 115$	SW13	100
	946176	$8,0 \times 135$	SW13	50
	946177*	$10,0 \times 60$	SW17	100
	946178	$10,0 \times 80$	SW17	50
	946179	$10,0 \times 100$	SW17	50
	946180	10,0 $\times 120$	SW17	50
	946181	$10,0 \times 140$	Sw17	50
	946182*	$12,0 \times 80$	SW19	50
	946183	12,0×95	SW19	50
	946184	$12,0 \times 110$	SW19	50
	946185	$12,0 \times 130$	SW19	25
	946186	$12,0 \times 160$	SW19	25
	946187	$12,0 \times 180$	SW19	25
	946188	$16,0 \times 125$	SW24	20
	946189	$16,0 \times 140$	SW24	20
	946190	$16,0 \times 180$	SW24	10
	nach DIN 400:			
	946191	$12,0 \times 200$	SW19	20
	946192	$12,0 \times 220$	SW19	20
	946193	$12,0 \times 240$	SW19	15
	946194	$12,0 \times 260$	SW19	15
	946195	$16,0 \times 220$	SW24	10
	946196	$16,0 \times 240$	SW24	10
	946197	$16,0 \times 260$	SW24	10
	*Screws not regulated by EIA-14/0409			

APPLICATION

1 Create drill hole

2 Clean drill hole thoroughly

Drive in bolt anchor with a hammer

Screw on the hexagonal nut until the appropriate torque is reached

Eurotec

TECHNICAL INFORMATION

$\begin{gathered} \text { Dimensions } \\ {[\mathrm{mm}]} \end{gathered}$	Min. Subsurface thickness hmin [mm]	Dilll diumeter $\mathrm{do}_{0}[\mathrm{~mm}]$	Min. Depith of drill hole	Min. Depth of drill hole	Max. Drill diameter in ottacheded part	Max. attuchment thickness	Installation torque
0x Lengh							Tinst $[\mathrm{Nm}]$

Bolt anchor with washer according to DIN 125 A

$6,0 \times 55^{*}$	100	6	50	35	7	5	11
$6,0 \times 85 *$	100	6	50	35	7	35	11
8,0 $\times 50$ *	100	8	55	30	9	5	15
$8,0 \times 75$	100	8	55	40	9	15	15
$8,0 \times 95$	100	8	55	40	9	35	15
8,0 $\times 115$	100	8	55	40	9	55	15
$8,0 \times 135$	100	8	55	40	9	75	15
$10,0 \times 60^{*}$	100	10	65	30	12	5	25
10,0x80	100	10	65	50	12	5	25
$10,0 \times 100$	100	10	65	50	12	25	25
$10,0 \times 120$	100	10	65	50	12	45	25
$10,0 \times 140$	100	10	65	50	12	65	25
$12,0 \times 80^{*}$	110	12	80	50	14	5	40
$12,0 \times 95$	110	12	80	65	14	5	40
$12,0 \times 110$	110	12	80	65	14	20	40
$12,0 \times 130$	110	12	80	65	14	40	40
$12,0 \times 160$	110	12	80	65	14	70	40
$12,0 \times 180$	110	12	80	65	14	90	40
$16,0 \times 125$	120	16	90	80	18	15	80
$16,0 \times 140$	120	16	90	80	18	30	80
$16,0 \times 180$	120	16	90	80	18	70	80

Bolt anchor with washer according to 0 IN 440

$12,0 \times 200$	110	12	80	65	14	110	40
$12,0 \times 220$	110	12	80	65	14	130	40
$12,0 \times 240$	110	12	80	65	14	150	40
$12,0 \times 260$	110	12	80	65	14	170	40
$16,0 \times 220$	120	16	90	80	18	110	80
$16,0 \times 240$	120	16	90	80	18	130	80
$16,0 \times 260$	120	16	90	80	18	150	80

Bolt onthor A4

$8,0 \times 75$	100	8	60	45	9	15
$8,0 \times 100$	100	8	60	45	9	40
$10,0 \times 100$	120	10	75	60	12	20
$10,0 \times 120$	120	10	75	60	12	45
$10,0 \times 140$	120	10	75	60	12	20
$12,0 \times 140$	140	12	85	70	14	55

* Not reguluted by EAA-14/0409

ECS SOFTWARE
Do you already know the ECS calculation program? Here you can easily calculate all necessary information for your specific construction site. Of course, this also works with our other products.
3
Download now www.eurotec.team/service

Gurotec

Sllent EPDM DECOUPLING PROFILE

FOR SOUND INSULATION AND MATERIAL SEPARATION

ADVANTAGES

Versatile applications

- Can be individually cut to size (supplied as a roll)

Ageing-resistant
. UV-stable

- Ozone-resistant

Free of conflict materials

PROPERTIES

Density: approx. $1,4 \mathrm{~g} / \mathrm{cm}^{3}$
Usage temperature: $-30^{\circ} \mathrm{C}-+90^{\circ} \mathrm{C}$
Shore hardness $48=0,500 \mathrm{~N} / \mathrm{mm}^{2}=0,05 \mathrm{kN} / \mathrm{m}^{2}$

INSTRUCTIONS FOR USE

Cut the decoupling profile to the desired length and place it in the chosen position, then fasten it in place at intervals of approx. $40-60 \mathrm{~cm}$, for example using the Eurotec Hammer tacker.

Art. no.	Name	Thickness [mm]	Width [mm]	Lenght [mm]	Color	Material	PU
945382	Silent EPM decoupling proile	5	95	20	Black	EPDM	1

Material properties			
Property	Measurement method	Unit	Value
Hardness	DIN 507619 -1	Shore A	48
Density	DIN5349	$\mathrm{g} / \mathrm{m}^{3}$	1,23
Tearstrengh	DIN5354	MPa	8,5
Elongation of brak	DIW53504	\%	510
Compresion set	DIW 150815-1	\%	≤ 40
Temperature resistance		${ }^{\circ}$	-30/100 ${ }^{\circ} \mathrm{C}$

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned excusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Eurotec

ECKTEC

THE SPACE-SAVING ALTERNATIVE TO THE CONVENTIONAL BRACE

ADVANTAGES

Supports load absorption with horizontal forces
Pre-assembly at the factory optional

Many different areas of use

DESCRIPTION

The EckTec connector can replace the conventional brace.
This allows a better look without disruptive braces, especially at low installation heights.

INSTRUCTIONS FOR USE

The EckTec connector is fixed with two 4×40 Paneltwistecs. The first KonstruX ST 8×155 fully-threaded screws are then set at 25° in the posts. After mounting the cross beam, the other 8×95 KonstruX ST fully threaded screws can be set at 90°. Min. cross-section of beam: $120 \times 120 \mathrm{~mm}$.

Load capacities EckTec 100	M1,Rd $[\mathrm{kNm}]$	F1,Rd $[\mathrm{kN}]$
Timber $-\left(24, \mathrm{pk}=350 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{kmod}=1,0\right.$	1,39	
Torque	0,96	8,4
Torque and traction (combined)		

Gurotec

INDIVIDUAL SOLUTIONS FOR COMPLEX CONSTRUCTIONS

Your construction site is a bit more complex and you are missing the perfect connector for special tasks? No problem!

On request, we manufacrute individual components, adapted to your needs, so that you can build worry-free!
Due to the ever-increasing popularity of wood as a building material in terms of environmental protection and cross laminated timber explicitly in building construction, we have increasingly focused on the topic of fastening and anchoring of prefabricated timber elements.

In this context, the efficiency as well as the quality of the products from the complex field of timber engineering is in the foreground. The core of this demanding architecture consists of complicated shapes, enormous spans of the structures as well as high static challenges. For our customers we are able to develop and manufacture unique solutions in these areas of modular construction. These include hall structures for industry, trade and agriculture; but also bridges or more complex roof structures.

SPECIAL ELEMENTS

We offer customized solutions for your projects. From floor anchor plates with cross bracing in heavy timber construction connected by steel cables to cross flat connectors for heavily loaded timber connections with individual hole patterns.

Optimal load distribution thanks to individual adaptations to your projects
Better utilization of the individual connectors, for highly stressed junctions in engineered timber construction

Eurotec

EUROTEC MODULE CONNECTORS

Our new products include shearing angles, shearing plates, tie rods and tension straps. These are used for anchoring walls, columns and ceilings.

The special features of shearing angles are the different installation heights and the type of perforation, depending on the application.

In order to secure aligned components against shear forces, we also developed the shearing plate, which can be used in a variety of ways to cover all possible anchoring cases.

In our product range you will find several variants of the tension straps. They can be used to create timber-timber, timber-concrete and steel-steel connections. Special holes for bolting at an angle of 45° make the tension straps particularly efficient and unique.

The Eurotec tie bar is used to absorb tensile forces to enable simple and fast base point anchoring of timber elements in timber, steel or concrete substrates.

CONDITIONS OF SALE AND DELIVERY

All sales to buyers, customers and contract partners, hereinafter referred to as customers, are made exclusively subject to the following terms and conditions unless other agreements are made in writing in the individual case:

1. SCOPE, GENERAL PROVISIONS

Our terms and conditions shall apply exclusively! We will not accept contradictory terms and conditions of our customers that deviate from our conditions unless we have given our express written consent to their validity. Our terms and conditions shall apply even if we execute orders without reservation despite being aware of contradictory conditions or conditions that deviate from our terms and conditions. Our terms and conditions shall also apply to all future transactions with our customers. Customers can access the latest version of these Standard Terms and Conditions at www.eurotec.team at any time.

2. OFFERS, WRITTEN FORM

Our offers are non-binding and subject to alteration without notice until we issue our final order confirmation. Contracts and agreements, as well as transactions brokered by our representatives, shall become binding only when we issue our written order confirmation. Verbal agreements, even within the framework of contract execution, are not valid unless confirmed by us in writing.

3. PRICES, PACKAGING, OFFSETTING

Unless otherwise indicated by the order confirmation, our prices are ex-works and exclusive of packaging. This is billed separately. The minimum order value is $£ 50.00$. For smaller quantities, we charge a flat processing fee of $€ 30.00$.
a) Our prices are exclusive of statutory value added tax. This is stated and charged separately in the invoice at the statutory rate applicable on the date of billing.
b) Our customer may only claim a right of offsetting insofar as counterclaims are established to be legally binding or are undisputed or accepted. A right of retention may only be exercised with respect to counterclaims resulting from the same contractual relationship.

4. DELIVERY, DELIVERY PERIOD AND FORCE MAJEURE

Unless otherwise agreed in writing, the place of performance shall be our company premises. The goods are shipped at the customer's risk and expense by third parties acting on our behalf. From the time at which the goods are made ready for delivery and the customer has been informed of their readiness for shipping, the customer shall bear the risk of accidental loss or deterioration of the item. This shall apply even if shipping is delayed as a result of circumstances for which we are not responsible. Punctual handing over of the goods to a shipping company requires that the order be placed on time by our customer. If the goods are handed over to the appointed shipping company punctually, we will not be liable for delayed delivery to the customer. This shall apply even if a delivery deadline was agreed with the customer, especially in the case of delivery to a construction site. The customer may be exempted from rush charges incurred in relation to this if there is a legal basis for deducting this surcharge from the forwarder's bill.
Statements relating to delivery periods are always to be seen only as approximate and non-binding. They shall begin on the date of our order confirmation but not before all of the order details are clarified in full. They refer to the time of consignment ex-works and shall be considered met when the goods are reported to be ready for dispatch. Without prejudice to our rights arising due to the customer's default, they shall be extended by the period for which the customer is in arrears to us with respect to their obligations arising from this or other orders.
Even if they arise at our suppliers, the following grounds are among those that shall release us from the obligation to adhere to the delivery period and shall entitle us to extend the delivery periods, to make partial deliveries or to wholly or partially withdraw from the part of the contract that is not yet fuffilled without becoming liable to pay damages as a result, unless we are guilty of intent or gross negligence: interruptions of operations and difficulties in delivery of any kind, e. g. shortages of machinery, goods, materials or fuels, or incidents of force majeure, e. g. export and import embargos, fires, strikes, lock-outs or new official measures that adversely affect production costs and shipping.

5. SHIPPING

Goods are shipped at the expense and risk of the customer even if prepaid delivery was agreed. Additional costs for express shipping shall always be borne by the customer. Freight costs paid by us are to be seen only as an advancement of freight charges on behalf of the customer. Additional freight costs for urgent and express parcels shall be borne by the customer, even if we have borne the transport costs on individual occasions. Goods reported as ready for shipping must be accepted immediately and will be charged as exworks. If the goods are to be shipped abroad or passed directly to third parties, they must be examined and accepted in our factory; otherwise, the goods shall be deemed to have been delivered in accordance with the contract to the exclusion of any complaints. The risk, including that of confiscation, shall be transferred to the customer when the goods are handed over to the forwarder or freight carrier and, at the latest, when they leave our facility. Return shipments always require prior consultation with our internal sales depariment. Goods that are free of defects are only taken back with our express consent. A credit note is then issued for the value of the goods with deduction of a 25% return fee per item or against a minimum fee of $€ 50$ for returning the goods to storage. Strictly no debit notes are accepted.
6. DESIGN AND PROPERTY RIGHTS

The customer shall bear sole responsibility and be liable for ensuring that the goods it orders do not violate thirdparty property rights. No verification is performed on our part in this respect. The customer shall indemnify us against injunctions or claims for damages by third parties. If an iniunction is requested against us, the customer shall meet the legal costs and shall compensate us for the damages we have incurred.

7. ACCEPTANCE, QUANTITY TOLERANCES AND CALL-OFFS

For contracts with ongoing deliveries, the goods are to be accepted in monthly quantities that are as consistent as possible over the course of the contractual period. If a call-off is not made on time, we shall be entitled, after the expiry of a grace period that we have granted, to divide the order at our own discretion, withdraw from the part of the contract that has not yet been executed, or make a claim for damages due to non-performance. In the case of call-off orders, the call-offs must always be made within 12 calendar months. Over- or under-shipment by up to 10% of the order shall be permissible.

8.1 PAYMENT TERMS FOR INVOICES, RIGHT OF RETENTION

Invoices shall be payable with a 2% discount within 10 days of the invoice date or net within 30 days, regardless of when the goods are received and without prejudice to the right to make a complaint for defects. Payment by means of acceptance or customer's bill of exchange shall require special written agreement in advance. Discount charges will be charged in the case of payment by means of acceptance, which must have a term no longer than 3 months and be issued within 1 week of the invoice date. Credit notes for bills of exchange or cheques shall apply subject to receipt and regardless of the purchase price's earlier due date in the event of defaut by the customer. They shall be issued with the value at the date on which the equivalent amount will be available to us; the discount charges will be charged at the respective bank rate. In the event that the payment term is exceeded, interest and commissions
may be charged without prejudice to other rights at the respective bank rate for overdrafts but at a rate at least 5% above the respective discount rate of the Deutsche Bundesbank [German Federal Bank]. If the payment terms are not adhered to or we become aware of circumstances that, in our view, are sufficient to reduce the customer's credit worthiness, all of our claims shall become payable immediately regardless of the term of any bills of exchange that have been accepted or credited.
We shall then also be entitled to perform outstanding deliveries only in exchange for advance payment, to withdraw from the contract after a reasonable grace period, and to demand compensation for default. We may also prohibit the resale or processing of the delivered goods and demand their return or the transfer of indirect possession of the delivered goods at the customer's expense. The customer hereby already authorises us to enter its premises and confiscate the delivered goods in the above cases. We shall be entitled to the usual securities for our claims according to their nature and extent, even if they are subbect to conditions or of limited duration. Offsetting or withholding payments as a result of any counterclaims or notifications of defects shall be prohibited, except where claims are undisputed or established to be legally binding.

8.2 TERMS OF PAYMENT FOR WEB-SHOP CUSTOMERS

Payment shall be made exclusively in advance. Once the order process in our online shop is complete, you will receive an email with the bank details for our business account. The invoiced amount must be transferred to our account within 7 days. We cannot carry out your order until the payment arrives.

9. RETENTION OF TITLE

Until all liabilities arising from the business relationship are paid in full and, in particular, until all bills of exchange and cheques, including finance bills, given as payment are cashed, the goods delivered by us shall remain our property and may be taken back by us at the customer's expense in the event of default in payment. Until this point, the customer shall not be entitled to pledge or assign the goods to third parties as a security; it may sell them on or process them only within the framework of its ongoing business transactions. The customer shall be obliged to inform us immediately of any seizure by third parties of the goods delivered subject to retention of title.
In the event of further processing, the customer shall not acquire ownership of the goods delivered by us as set out in section 950 of the German Civil Code (BGB), as any processing is carried out by the customer on our behalf. Without prejudice to the rights of third-party suppliers, the newly created thing shall serve as security for us up to the amount of our total claims arising from the business relationship. It shall be kept safe for us by the customer and shall be regarded as goods for the purpose of these terms and conditions. If the item is intermixed or otherwise combined with other objects that to do not belong to us, we shall acquire at least co-ownership of the new thing in proportion to the value of the contract item to that of other objects that have been processed with it. If the customer sells the goods delivered by us, regardless of their condition, it hereby already assigns to us all claims against its customers arising from sales, as well as all ancillary rights, until all of our claims arising from delivery of goods are paid in full. At our request, the customer shall be obliged to notify its downstream customers of the assignment and to hand over the information and documents we require in order to assert our rights against its downstream customers.
If the total value of the securities given to us exceeds our claims arising from delivery by more than 20%, we shall be obliged to retransfer securities to this extent at the customer's request. If the retention of fitle or assignment is invalid in the territory in which the goods are located, a security corresponding to the retention of title or assignment in this territory shall be deemed to be agreed. If the customer's cooperation is required in this process, it shall take all necessary measures to establish such rights.

10. NOTIFICATION OF DEFECTS, LIABILITY

Our customer shall be entitled to a warranty only if they have properly fulfilled their legal obligations under sections 377 and 378 of the German Commercial Code (HGB) with respect to the duties of examination and notification. If defects are present, we shall be entitled at our choice to either repair the defects or provide a replacement; if we are not prepared or not able to do so, and especially if repair/replacement is delayed beyond reasonable deadlines for reasons that we are responsible for, or if repair/replacement otherwise fails, our customer shall be entitled at its choice to withdraw from the contract or to demand a corresponding reduction in the price. Unless otherwise stipulated below, further claims of the customer shall be excluded regardless of their legal basis. We shall not be liable for damage that did not occur to the delivered item itself. In particular, we shall not be liable for lost profit or other pecuniary losses of the customer. The above exemption from liability shall not apply if the damage is caused by intent or gross negligence; it shall also not apply if the customer asserts claims for damages for non-performance due to the lack of a warranted characteristic. If we breach an essential contractual duty through negligence, our duty of reimbursement for property damage or personal injury shall be restricted to the level of cover provided by our product liability insurance.
We are prepared to allow the customer to view our policy. The warranty period is 6 months calculated from the date of transfer of risk. This period is a limitation period. The period shall also apply to claims under sections 1 and 4 of the German Product Liability Act (ProdHaftG). Insofar as our liability is excluded or restricted, this shall also apply to the personal liability of our employees, workers, staff, representatives and agents. Goods that are subject to a complaint must not be sent back without obtaining our prior written consent, as otherwise we may refuse to accept them at the sender's expense. Goods that have been partially or wholly processed will not be taken back under any circumstances. The customer is obliged to make sure that the purchased product is suitable for the intended application using technical descriptions, where available, and based on their specialist knowledge and to familiarise themselves with the application of this product. If they are not familiar with the product's application, our company staff are available to provide advice. All information and advice from our staff is provided carefully and conscientiously. Under no circumstances does this information and advice replace the indispensable consultancy services of architects and specialist planning companies or the services they provide during construction. Only the authorised professional groups are entitled to provide these services.

11. PLACE OF PERFORMANCE AND JURISDICTION, MISCELLANEOUS

Our company's registered office shall be the place of performance for all obligations arising from this contract, including liabilities from cheques and bills of exchange. Provided our customer is a merchant, the place of jurisdiction for all disputes arising from the contractual relationship shall be, at our choice, the Local Court of Hagen. Contracts with our customer shall be governed exclusively by German law to the exclusion of the UN Convention on Contracts for the International Sale of Goods of 11 April 1980. The language of the contract shall be German.

Hagen, 16. February 2018
E.,.r.o. Tec GmbH

Unter dem Hofe 5-58099 Hagen
Managing directors: Markus Rensburg, Gregor Mamys
Court of registration: Local Court of Registration number HRB 3817 VAT ID No.: DE 812674291
Tax number: 321/5770/0639
Tel. +4923316245-0 • Fax +49233162 45-200 • email inf@@urotec.team • www.eurotec.team

Gurotce
 The specialist for fastening technologie

SO,
 HOW CAN WE HELP YOU?

E.u.r.o.Tec GmbH

Unter dem Hofe 5-D.58099 Hagen
Te. +49 233162 45-0
Fax +49 $23316245-200$
E-Mail info@eurotecteam
wwweurofectean/en

[^0]: Hole pattern with the Angle-bracket screw

[^1]: Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBuuO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

[^2]: Façade construction with the Topduo roofing screw.

[^3]: \square Panelłwistec countersunk head*Paneltwistec washer head* \square Topduo flange button head screw**Topduo cylinder-head**

